

Effectiveness Assessment of an Early Testing Technique using
Model-Level Mutants

M. F. Granda
Computer Science Department, University

of Cuenca
Ecuador

fernanda.granda@ucuenca.edu.ec

N. Condori-Fernández
Computer Science Department, VU

University
The Netherlands

n.condori-fernandez@vu.nl

T. E. J. Vos
PROS, Universitat Politècnica de

València
Spain

tvos@pros.upv.es

 O. Pastor
PROS, Universitat Politècnica de València

Spain
opastor@pros.upv.es

ABSTRACT

While modern software development technologies enhance the
capabilities of model-based/driven development, they introduce
challenges for testers such as how to perform early testing at
model level to ensure the quality of the model. In this context, we
have developed an early testing technique supported by the
CoSTest tool to validate requirements at model level. In this paper
we describe an empirical evaluation of CoSTest with respect to its
effectiveness in terms of its fault detection and test suite
adequacy. This evaluation is carried out by model-level mutation
testing using first order mutants (created by injection of a single
fault) and high order mutants (containing more than one fault)
with seven conceptual schemas (of different sizes) that represent
the functionality of different software systems in different
domains. Our findings show that the test suites generated by
CoSTest are effective at killing a large number of mutants.
However, there are also some fault types (e.g. WCO1, WCO3) that
our test suites were not able to detect. CoSTest’s effectiveness is
affected by the mutant type that is executed; high order mutant
types were more effective in terms of detecting fault types and
test suite adequacy.

CCS CONCEPTS
• Software and its engineering → Software testing and
debugging • Software and its engineering → Empirical
software validation

KEYWORDS
Test Suite Effectiveness, Effectiveness Assessment, Mutation
Testing, Conceptual Schemas Testing, Class Diagram Mutation

ACM Reference format:

M. F. Granda, N. Condori-Fernández, T. E. J. Vos, and O. Pastor.
2017. SIG Proceedings Paper in word Format. In Proceedings of
ACM Woodstock conference, Karlskrona, Sweden, June 2017
(EASE’2017), 10 pages.
DOI: 10.1145/123 4

1 INTRODUCTION
Constructing software automatically from models or Conceptual
Schemas (CS) is one of the current challenges in software
engineering, especially in a Model-driven Engineering context
[26]. A well-formed model, being an accurate representation of all
the requirements for a system under construction, is a key factor
in the successful development and production of the system. The
development of a CS is an iterative process involving evaluation
of the model, its accuracy and its improvement from the
evaluation results.
Testing is a well-established technique that helps to accomplish
this task and provides a level of confidence in the end product
based on the coverage of the requirements achieved by the tests.
In this context, we defined an early testing technique for
validating Conceptual Schemas in a Model-driven environment
[14][13]. This technique covers: 1) test suite generation, 2) CS
under test generation, 3) test execution and report generation
with the faults detected and the coverage analysis. Therefore, the
technique’s effectiveness and adequacy of the test suite require to
be evaluated.
Effectiveness in detecting faults can be evaluated by the types and
number of faults that can be detected by the technique [28]. For
assessing the adequacy of a test suite, mutation testing is a method
that injects artificial faults or changes into a software product
(mutant) and checks whether a test suite is “good enough” to
detect these artificial faults. The adequacy level of the test suite
can be measured by a mutation score that is computed in terms of
the number of mutants killed (detected) by the test suite [18].
Killing a mutant means that the execution is stopped because a
fault was detected or because it reaches an inconsistent state and
cannot continue execution. Mutants are produced by using
mutation operators that describe syntactic changes to the original
software product. Mutants can be classified into two types: First
Order Mutants (FOM) and Higher Order Mutants (HOM) [19].
Traditional mutation testing considers FOM created by injection
of a single fault. HOM contain more than one fault. Jia and
Harman claim that some HOMs are harder to kill than the FOMs

EASE’2017, June 2017, Karlskrona, Sweden M. F. Granda et al.

2

[18], and so we were interested in evaluating the effectiveness of
CoSTest test cases in both mutant types.
Mutation testing was originally introduced by DeMillo et al. [5]
and Hamlet [17], as a support technique for developing tests for
software systems represented at the code level. However, it has
also been applied to models at the design level, for example to
Finite State Machines [9], State Charts [11], Activity Diagrams
[10], and Network protocols [20].However, there is no empirical
evidence on the effectiveness of mutation testing in improving
test suites for Conceptual Schemas.
This paper uses a mutation-testing based approach to evaluate the
fault detection effectiveness of an automatically generated test
suite to test a given CS. This means the CS is mutated and not the
code!
In a previous paper [12],we proposed a set of 50 mutation
operators specifically designed to generate mutants for UML Class
Diagram-based CS and we evaluated the usefulness of an effective
subset of mutant types of 18 mutation operators to inject defects
into a CS. For this, we developed 1) the MtUML tool (Mutation
for UML) [16] for the generation and parsing (i.e. syntax analysis)
of first order mutants (i.e. mutants are generated by applying
mutation operators only once) by using the set of 18 mutation
operators previously defined for Conceptual Schema based on
UML Class Diagram (CD); and, 2) the CoSTest tool (Conceptual
Schema Testing) [12] to support the semi-automatic generation of
test cases from a requirements model, the execution of CS/CS
mutants against generated tests, and reporting the results.
The main contribution of this paper is to empirically evaluate
CoSTest’s effectiveness in detecting faults and the adequacy of the
test suite, using seven CSs and mutation testing.
The paper is organized as follows. Section 2 describes the CoSTest
technique. Section 3 presents the experimental design. Section 4
discusses the results. Section 5 summarizes the threats to validity.
The conclusions and future work are given in Section 6.

2 AN EARLY TESTING TECHNIQUE: CoSTest
As mentioned in Section 1, the main goal of CoSTest is to
automate a testing approach for Conceptual Schemas. For this,
CoSTest generates test cases (i.e. assertions with the expected
value), transforms the conceptual schema under test into an
executable CS and executes the test process for reporting the
results. In this section we describe the testing environment, the
steps of the CoSTest technique and test cases properties.

2.1 The testing environment
The environment for testing conceptual schemas provided by
CoSTest is based on the Action Language for Foundational UML,
or Alf [23], adopted as standard by the OMG [25].
Alf is basically a textual notation for UML behaviours that can be
attached to a UML model at any point that may contain a UML
behaviour, e.g. the method of an operation or the classifier
behaviour of a class. As Alf notation includes basic structural
modelling constructs, it is also possible to deal with entire models

textually in Alf. Semantically, Alf maps the Foundational UML
(fUML [24]) subset, then fUML provides the virtual machine for
the execution of the Alf language, so that the test suite and
executable model are generated and transformed into Alf
language, respectively.

2.2 The CoSTest Process
Fig. 1 provides the reader with a description of how CoSTest
operates, its phases and activities.
2.2.1 Test suite Generation
1. Identify the input requirements: The tester needs to select the

requirements model (RM), which is based on
Communication Analysis [6]. We assume that the model is
syntactically well-formed.

2. Generate the test model (TM): CoSTest analyses the RM
structure by automatically traversing all the RM nodes
(event sequences) and extracting all the Test Model (TM)
elements and their properties.

3. Generate the abstract test scenarios (TS): CoSTest computes
the total number of possible test scenarios (based on event
sequence) and generates the test scenarios with abstract test
cases.

4. Concretize Variables: The next step is to concretize the
variables of the test cases. The tester can (i) recover a variable
list from the test model and generate values automatically
from the example values specified in the requirements
model, or (ii) concretize manually by introducing values for
each variable.

5. Choose the test suite types: The tester can select between two
types of test cases, such as (i) partial (only positive test cases)
ii) complete, which adds test cases with some negative
conditions, such as values out of range, constraint violations,
and unique value violation for class variables.

6. Generate concretized test cases (CTC): In this phase, CoSTest
automatically transforms the abstract test cases into
parameterized scripts. The output is a non-executable script
for each test scenario. Scripts are not executable in the sense
that they do not contain concretized variables.
CoSTest then computes and generates the total number of
possible executable and concrete test cases that may be
executed on the CS, including concretized variables, the test
objective and an expected output (oracle) that is used to
validate the CS requirements. The output of this step is a test
suite formed by an executable script (Alf script) for each test
scenario. The test suite for the subsequent testing process is
now ready.

7. Identify the Conceptual Schema: The tester, which is a UML
Class Diagram (CD), identifies the Conceptual Schema. We
assume that the CS is syntactically well-formed.

2.2.2 CSUT Generation
8. Generate an Executable Conceptual Schema (CSUT): CoSTest

transforms the CS into an executable format (Alf) for its
execution.

Effectiveness Assessment of an Early Testing Technique using… EASE’2017, June 2017, Karlskrona, Sweden

3

Identify
Requirements

model

1

Requirements Model

CoSTest’s Activities

Software Artefacts

Modeller/tester Activities

RM
Identifier

Generate
Test Model

TM
representation

Conceptual Schema

Coverage Report
Detected Faults List

Choose
Test Cases

Generate
Abstract Test

Scenarios

ATS
representation

Concretize
Variables

Variable
Values

Test Cases
with

Oracles

Generate Test
Cases and Oracles

Execute Test
Cases

Generate
Executable

CS

Test
type

Identify
Conceptual

Schema

ECS
representation

CoSTest’s Artefacts

2

3

Concretize
Variables

4

4 5

6

7

8

Testing
type

Choose
Testing

9

10

Testing Results

TEST SUITE GENERATION
TEST EXECUTION AND
RESULTS GENERATIONCSUT GENERATION

Figure 1. The CoSTest process

2.2.3 Test Execution and Reports Generation
9. Choose testing type. The testing type is based on the

following stop criteria: Testing should be stopped when (1)
one fault is detected; or (2) all available test cases have been
run.

10. Execute Test suites: Test cases are executed on the executable
CS and the output is compared to the stored expected output
(from Step 6). CoSTest generates an execution report in
which the executed test cases are classified as passed, failed
or inconclusive. A coverage analysis is performed and a fault
report is generated.

Thus, Fig. 1 contains four main parts: CoSTest artefacts, CoSTest
activities, software artefacts and modeller/tester activities. As the
names suggest, CoSTest activities are done automatically whereas
the modeller/tester activities are done manually. CoSTest
encapsulates all the CoSTest artefacts. The numbered ovals
represent activities and the boxes represent artefacts. Arrows
to/from activities represent the consumption and production of
artefacts, respectively.

2.3 CoSTest Test Cases
A test suite for CS is a set of one or more test scenarios. Each test
scenario is a story that consists of one or more test cases. The
CoSTest test cases exhibit the following properties:
 A test case consists of a fixture and one or more statements

that execute one of the tests applicable to CS, such as testing
assertions about the occurrence or the non-occurrence of an
event. The fixture is a set of statements (e.g. create an object
or link, execute a method) that create a CS state and define
the values of the CS variables.

 Each execution of a test case starts with the execution of the
fixture. For example, if we want to test the creation of an
object of the RegisterUser class in the Sudoku Game CS, a test
case that corresponds to a one test scenario generated by
CoSTest would be as shown in Fig. 2.

 It is assumed that the execution of each test case starts with
an empty state. With this assumption, test cases of a CS are

independent of each other, and the order of their execution
is therefore irrelevant.

Figure 2: A partial view of a test case

 A test case always returns a verdict which may be Pass, Fail
or Inconsistent. The execution of the test cases leads to one
of the following three outputs:

o No defects and a status of passed execution. This
is considered the output expected.

o A defect list and a status of failed execution. For
example the execution of the test cases may
produce an output with several defects (e.g.
missing class, incorrect operation and missing
operation), which is different from the expected
output.

o A defect list (optional) and “status=inconclusive” if
the execution is not conclusive. For example, if the
fixture has caused a fault, this leads to an
inconclusive status.

In the next section, we describe the design of a controlled
experiment for evaluating the proposed technique by means of its
effectiveness for detecting faults and test suite quality.

3 EXPERIMENTAL PLAN
Since the experiment was motivated by the need to investigate the
effectiveness of our testing tool, we intended to compare the
effectiveness and adequacy of the test cases when they were
applied in both first order mutants and high order mutants to
detect faults in seven CS. The experiment was carried out in 2016

EASE’2017, June 2017, Karlskrona, Sweden M. F. Granda et al.

6

(from January to March) and was designed according to Wholin
et al. [29], and reported according to Juristo and Moreno [21].
This section describes the goal of the study, research questions,
metrics used, the subject CS, and the experimental settings.

3.1 Goal
In the line with the Goal/Question/Metric Paradigm [27], the goal
of our empirical study was the following:
Analyse the test suite generated by the CoSTest tool for the
purpose of carrying out a comparative evaluation with respect to
its effectiveness in detecting faults, fault types and the adequacy of
the test suite from the point view of the testers in the context of
mutants generated for seven CS.

3.2 Research Questions
As we were interested in determining if the effectiveness was the
same for both types of mutants (i.e. FOM and HOM), we posed
and studied the following research questions:

 Q1: How significant is the influence of the mutation type in
CoSTest’s effectiveness in detecting faults? As we were also
interested in measuring whether the test case quality
depends on the type of mutant:

 Q2: How adequate are CoSTest test suites for killing both
the First Order Mutants and High Order Mutants of
Conceptual Schemas?

3.3 Hypotheses
We defined three hypotheses. Table 1 shows the null hypotheses
(represented by a 0 in the subscript), which corresponds to the
absence of an impact of the independent variables on the
dependent variables. The alternative hypotheses involve the
existence of such an impact and are the expected result.

Table 1: Specification of hypotheses
Null
hypothesi
s

Statement:
Mutant type does not influence …

H10 (RQ1) … the effectiveness of the CoSTest test cases in
detecting faults in Conceptual Schemas

H20 (RQ1) … the effectiveness of the CoSTest test cases in
detecting fault types in Conceptual Schemas

H30 (RQ2) … the adequacy of the CoSTest test cases

3.4 Variables and Metrics

3.4.1 Independent Variables
We consider one independent variables (a.k.a. factor [21]):

 Mutation type. Since this study uses mutation for injecting
the artificial faults into a CS, mutants can be classified into
two types according to the number of mutated elements:

o First Order Mutants (FOM), which are generated
by applying mutation operators (i.e. rules to
modify the grammar used to capture the syntax of
a software artefact [18]) only once.

o Higher Order Mutants (HOM), which are
generated by applying mutation operators more
than once [18].

3.4.2 Dependent Variables
We consider the following dependent variables (a.k.a. response
variables [21]), which are expected to be influenced to some extent
by the independent variable.
 Fault Detection Effectiveness. To investigate our RQ1 we need

to measure the effectiveness of the CoSTest tool in terms of
both the number of faults found and the type (or cause) of
the faults that were found [22].

 Adequacy Test Suite. For a test suite T the adequacy score is
a variable that can be used to measure the effectiveness of a
test suite in terms of its ability to kill mutants because it is
one outcome of the Mutation Testing process, which
indicates the quality of the input test set [18].

3.4.3 Effectiveness Metric
For evaluating the effectiveness of our testing technique, we used
two metrics:
 Rate of Fault Detection (FDR). The metric FDR is the value

calculated by dividing the number of faults detected by the
tool by the total number of faults that are expected to be
identified from the CS mutants.

𝐹𝐷𝑅(𝑇) = 𝐹𝐷(𝑇) 𝐹𝐸⁄ (1)
 Rate of Fault Type Detection (FTDR). The metric FTDR is the

value calculated by dividing the number of fault types
detected by the tool by the total number of fault types that
are expected to be identified from the CS mutants.

𝐹𝑇𝐷𝑅(𝑇) = 𝐹𝑇𝐷(𝑇) 𝐹𝑇𝐸⁄ (2)

3.4.4 Test Suite Adequacy Metric
During execution each CS mutant Mi will be run against a test
case suite T. If the result of running Mi is different from the result
of running CS for any test case in T, then the mutant Mi is said to
be “killed”, otherwise it is said to have “survived”. A CS mutant
may survive either because it is equivalent to the original model
(i.e. it is semantically identical to the original model although
syntactically different) or the test set is inadequate to kill the
mutant. Thus, the mutation score (MS) for a test suite T is the ratio
of the number of killed mutants MK (T) over the total number of
the non-equivalent mutants MT generated for a CS, as follows::

𝑀𝑆(𝑇) = 𝑀𝑘(𝑇) 𝑀𝑇⁄ (3)

3.5 Experimental Context

3.5.1 Subject CS
We used seven subject CS in our study which contained a variety
of characteristics that can be present in UML CD-based CS,
including classes, relations (i.e. association, composite
aggregation, and generalization) and different types of constraints
(i.e. pre-condition, post-condition and body condition). These CS
were of different sizes and domains (e.g. information systems,

Effectiveness Assessment of an Early Testing Technique using… EASE’2017, June 2017, Karlskrona, Sweden

5

games). The subjects included an industrial case (i.e. IM), some
others were found in the literature (i.e. [7], [8] and [2]) and others
(i.e. ER, OCR and VC) were selected because they contained the
CS elements required to inject the faults. Table 2 summarizes the
characteristics of these CS.

Table 2: Elements of the Subject Conceptual Schemas
Element VC MT SG ER OCR SS IM
Classes 5 6 11 7 10 9 6
Attributes 19 26 32 42 62 45 29
Operations 6 13 19 24 16 32 13
Parameters 22 43 48 75 77 91 51
Associations 4 5 11 8 10 9 4
Constraints 17 9 19 21 14 12 8
Generalizations 0 0 4 0 3 0 0

A brief description of each CS is as follows:
1. Video Club (VC) CS represents the functionality of a chain

of video stores to manage movies, partners and movie
rentals.

2. Medical Treatment (MT) CS defines part of a Medical
Treatment business process for a fictional hospital named
University Hospital Santiago Grisolía, developed by España
et al. [8].

3. Sudoku Game (SG) CS was developed by Tort and Olivé [2]
as an object-oriented CS of the Sudoku Game system. This
CS defines the functionality for managing different users,
playing with their sudokus and generating new ones.

4. Expense Report (ER) CS defines the functionality of an
information system to manage the expense-report life cycle
of a business. This CS deals with several entities such as
departments, employees, projects and expense types.

5. Online Conference Review (OCR) CS, which is based on the
description of the CyberChair System [4], defines the
functionality of an information system to deal with members
(committee chair and program committee) of a conference,
as well as authors that submit papers to be evaluated for
inclusion in the conference proceedings.

6. Super Stationery (SS) CS defines the information system of
a company that provides stationery and office material to its
clients. This CS was developed by España et al. [7].

7. Incident Management (IM) CS defines the functionality of
an information system to solve the incoming incidents
(reception, process, allocation process and resolution
process). This CS is a real case taken from Everis Company1,
a multinational firm offering business consulting, as well as
development, maintenance and improvement IT.

3.5.2 Mutation operators
In a CS, missing, unnecessary and incorrectly modelled
requirements are the main causes of a CS inaccuracy that can be
detected by the requirements. In a previous work [12], 50
mutation operators were defined for CS, and 18 were evaluated
for generating valid first order mutants. These mutants were

1www.everis.com

generated with the help of a mutation tool prototype
(https://staq.dsic.upv.es/webstaq/mutuml.html).

In this work we applied 27 mutation operators out of a total of 50
(see Tables 3-4) to mutate a CS and evaluate CoSTest’s
effectiveness and the adequacy of the test suite. Table 3 shows 18
mutation operators to create first order mutants and Table 4 lists
the 9 mutation operators to create high order mutants.

Table 3: Mutation operators for CS FOM taken from [12]
Code Mutation Operator rule

1 UPA2 Adds an extraneous Parameter to an Operation
2 WCO1 Changes the constraint by deleting the references to

a class Attribute
3 WCO3 Change the constraint by deleting the calls to specific

operation.
4 WCO4 Changes an arithmetic operator for another and

supports binary operators: +, -,*,/
5 WCO5 Changes the constraint by adding the conditional

operator “not”
6 WCO6 Changes a conditional operator for another and

supports operators: or, and
7 WCO7 Changes the constraint by deleting the conditional

operator “not”
8 WCO8 Changes a relational operator for another and

supports operators: <, <=, >, >=, ==, !=
9 WCO9 Changes a constraint by deleting a unary arithmetic

operator (-).
10 WAS1 Interchanges the members of an Association.
11 WAS2 Changes the association type (i.e. normal,

composite).
12 WAS3 Changes the multiplicity of an Association member

(i.e. *-*, 0..1-0..1, *-0..1)
13 WCL1 Changes visibility kind of the Class (i.e. private)
14 WOP2 Changes the visibility kind of an operation.
15 WPA

Changes the Parameter data type (i.e. String, Integer,
Boolean, Date, Real).

16 MCO Deletes a constraint (i.e. pre-condition, post-
condition constraint, body constraint)

17 MAS Deletes an Association.
18 MPA Deletes a Parameter from an Operation.
Table 4: Mutation operators for CS HOM taken from [12]

Code Mutation Operator rule

1 WCO2 Changes the property (attribute) data type in the
constraint

2 WGE Changes the Generalization member ends
3 WAT1 Changes the Attribute feature “Is Derived” to true
4 WAT2 Changes the Attribute property “Is Derived” to false
5 WAT3 Changes the Attribute data type
6 MGE Deletes a Generalization relation
7 MCL Deletes the class (i.e. normal or association class)
8 MAT Deletes an Attribute
9 MOP Deletes an Operation

Each of the 27 mutant operators is represented by a three-letter
acronym and a number. The acronym consists of 3 parts: (i) one
letter that corresponds to the defect type injected by the mutation
operator (U=unnecessary, W=wrong and M=missing; (ii) two
letters that represent the modelling element (i.e. CO=constraint,
GE=generalization, AS=association, CL=class, AT=attribute,
OP=operation, and PA=parameter) affected by the mutation; and

EASE’2017, June 2017, Karlskrona, Sweden M. F. Granda et al.

6

(iii) a sequential number within its category, for example, the
“Missing Association” (MAS). Fig. 3 shows a partial view of a CS
in which five mutation operators have been applied. Four
operators generate valid FOM (i.e. b) MPA, c) MCO, d) WCO8, e)
WAS3). However, applying the MAS operator to the WhiteCells
association generates a non-valid FOM because there is a
constraint (i.e. WhiteCells derivation) that is related with the
association. Simply deleting the association would result in a
Dangling constraint, which evidently is not desirable.Therefore,
we need to add more steps to the operator (going from FOM to
HOM). The HOM should delete the association together with the
respective constraint. This way, the mutant will not be detected
by the parser and can generate a valid mutant for testing.
Our experiment was carried out under a within-subject design, all
our subjects were exposed to the two treatments of our
independent variable (mutation type) [3].

3.6 Experimental Procedure
This section describes the details of the experimental setup
including the subject CS used, instrumentation, data collection,
and analysis. Fig. 4 summarizes the experimental process, which
involved performing the following seven steps:

3.6.1 Choose CS Subjects
The selected subjects are described in Section 3.5.1.

3.6.2 Generate Test Suites
A test suite T was generated to kill CS mutants for each CS subject
by following Steps 1-6 of Section 2.2, we then analysed and
recorded the information on the generated test cases in order to
eliminate repeated or invalid test cases. The CoSTest report was
then used for this task

3.6.3 Execute Test Suites on CS
Each test suite is executed on the respective CS subject using our
CoSTest tool (https://staq.dsic.upv.es/webstaq/costest.html). We
assessed whether an invalid test case required a manual setting
(e.g. concretize variables that require several values because they
should be unique values or adjust a negative test case so that it
can create a valid sequence of events to validate constraints).
We adjusted the test cases in order to get a successful testing
process with the original CS and registered the invalid test cases.

3.6.4 Generate CS Mutants
As this step is quite computationally expensive and cumbersome,
we used our MtUML tool [16] for generating first order mutants,
in contrast to the high order mutants, which were generated
manually. Both mutant types were generated by using the
mutation operators introduced in Section 3.5.2. A syntax analysis
was then performed by using the Alf parser to ensure that the
mutants were valid and could be used in a testing process.
In this study, we used all the FOMs generated by the tool for all
CS subjects (see Table 8 in Appendix). In actual testing scenarios,
CS do not typically contain as many faults as these numbers of
mutants. The numbers of selected mutants derived by this process
for our subject CSs can be found at
https://staq.dsic.upv.es/webstaq/mutuml/experiment_data.htm.
In the other case, since there is no tool to automatically generate
HOMs, to simulate more realistic scenarios, we randomly selected
3 mutants from the pools of mutants created for each mutation
operator. Our goal was 27 mutants per CS, 3 mutants by each
mutation operator from Table 4, but some versions of our CSs did
not have enough mutants to allow formation of so many groups.

Figure 3. Excerpt of a UML CD-based CS and the application of five mutation operators

Effectiveness Assessment of an Early Testing Technique using… EASE’2017, June 2017, Karlskrona, Sweden

7

MUTANT
OPERATORS

4. GENERATE
MUTANTS

6.EXECUTE TEST
CASES AND
GENERATE
RESULTS

5. SELECT MUTANT
AND GENERATE

EXECUTABLE
MUTANT

MORE
MUTANTS?

YES

NO2. SELECT CS
AND

GENERATE
TEST SUITES

REQUIREMENTS
MODEL

7.
MUTATION

TESTING
RESULTS
ANALYSIS

Manual process Automated process (CoSTest)

MUTANT TESTING
RESULTS

GENERATION
RESULTS

REPEATED
TEST CASES

(EXCLUDE FOR
TESTING)

 REPEATED
TEST CASES?

YES

NO

CS
MUTANTS

TESTING
CRITERIA

CS TESTING
RESULTS

Legend

REQUIRE
MANUAL

SETTINGS?

Tester decision Automated decision

TEST
SUITE

MANUAL
SETTINGS

NO

YES

Input/Output artefact Flow control

3. EXECUTE
TEST SUITES ON

CS

MUTANT
TESTING RESULTS

1. CHOOSE
CS

MORE CS?

NO
CSUTCS

YES

Figure 4. Steps taken in experimental process

So, our random selection algorithm stopped generating mutants
for each mutation operator when it could not generate any more
unique mutants, resulting in several cases in which mutants
numbered less than 27, i.e. for WAT2, WGE and MGE operators
(see Table 9 in Appendix).

3.6.5 Select and generate an executable CS
mutant

Each CS mutant is transformed into an executable CS (CSUT) by
using the respective CoSTest module (see Step 8 in Section 2.2).

3.6.6 Execute Test Suites on CS Mutants
We ran each test case using CoSTest for each mutant and
maintained the test status (i.e. passing/failing/inconclusive). We
compared the output of each mutant against the output of the
original version of the CS with no faults. When the output of the
mutant was different to the original CS output, the test case was
labelled as failing and when the outputs were exactly the same,
the test case was tagged as passing (see Section 2.3). We then
manually examined the FOM with zero kills and eliminated any
that were semantically equivalent to the original CS. The analysis
of survivor mutants in order to identify equivalent mutants is a
prerequisite for calculating a mutation score. An example of an
equivalent mutant is shown in Fig. 5.

Figure 5. Excerpt of a Constraint mutated by WCO8

We used the CoSTest option to export the results (faults and
coverage analysis) of the testing process of the CS subject. If there

are further CS to be studied, Steps 2 to 5 are repeated with the
next subject.

3.6.7 Analysis of Testing Results
The CoSTest effectiveness and adequacy of the test suite is
calculated from the information recorded in this process. These
results are given in the next Section.

4 ANALYSIS AND INTERPRETATION OF
RESULTS

This section describes the analysis and interpretation of the
results related to our response variables (e) for Q1 and Q2. The
Statistical analysis was carried out on the Statistical Package for
Social Sciences (SPSS) V23.0.

4.1 Fault Detection Effectiveness
Since the first research question (Q1) was aimed at evaluating
CoSTest’s effectiveness at detecting faults, we compared the
number and types of faults detected for mutant type (i.e. FOM and
HOM) in the different CS subjects. Table 5 shows both the number
of the faults and the number of fault types detected in each CS
subject by mutant type (i.e. FOM and HOM).
Shapiro-Wilk tests were performed to evaluate the samples
normality. We used this test as our numerical means of assessing
normality because it is more appropriate for small sample sizes
(<50 samples).

4.2 Effectiveness based on Rate of Fault
Detection

Since all Sig. values for Shapiro-Wilk tests were 0.165 for FOM
and 0.001 for HOM, these variables do not follow a normal
distribution (<0.05 for HOM).

Table 5: Faults and Fault Types detected by Mutant Type
CS

Fault Types
VC MT SG ER OCR SS IM

FOM HOM FOM HOM FOM HOM FOM HOM FOM HOM FOM HOM FOM HOM
Extraneous Derived
Attribute

3

5

3

3

Extraneous Constraint 3 1 2 3 3
Missing Class 5 1 6 3 11 2 7 2 10 2 9 3 6 3
Missing Constraint 52 15 50 10 36 2 37 1 19 21
Missing Operation 13 7 2 14 4 17 6 6 3 23 4 7 2
Missing Association 4 8 13 12 8
Incorrect Operation 1 6 9 9 12 13 8 2 9
Incorrect Parameter 3 27 1 29 58 2 16 1 82 1 20 1
FDR 0.71 1.00 0.74 1.00 0.63 0.93 0.71 1.00 0.61 0.90 0.74 1.00 0.58 1.00
FTDR 0.83 1.00 0.80 1.00 0.86 1.00 0.80 1.00 1.00 0.88 0.75 1.00 0.86 1.00

EASE’2017, June 2017, Karlskrona, Sweden M. F. Granda et al.

8

So, we considered both mutant types as independent groups.
Then, the Mann-Whitney U Test was used to test our first null
hypothesis (H10). Fig. 6 shows the box-plot containing data on the
number of faults per mutant type and Table 6 shows the results of
the Mann-Whitney U Test.

Figure 6. Box-plot for Number of Faults by Mutant Type

From these results, we can see that the HOM group gets higher
scores on the dependent variable than the FOM group. Therefore,
we rejected hypotheses H10. In other words, “the rate of fault
detection is different for each mutant type; U =0, p=0.001<0.05”.

Table 6: Values of Mann-Whitney U Test
 Rate of Fault Detection
Mann-Whitney U .000
Wilcoxon W 28.000
Z -3.209
Asymp. Sig. (2-
tailed)

.001

4.2 Effectiveness based on Rate of Fault Type
Detection
As in the previous analysis, all Sig. values for Shapiro-Wilk tests
were 0.234 for FOM and 0 for HOM, which meant these variables
did not have a normal distribution (i.e. <0.05 for HOM).
Considering both mutant types as independent groups, we
selected the Mann-Whitney U Test (non-parametric test) to
evaluate the second null hypothesis (H20). Since the fault type
detection rate is different between FOM and HOM (see Fig. 7), we
rejected hypothesis H20. In other words, “the number of fault types
detected is different for each mutant type; (U = 4, p=0.005< 0.05)”.

Figure 7. Box-plot for FTDR by Mutant Type

4.3 Test Suite Adequacy
In Q2, we aimed to verify whether the mutation score of CoSTest
test suites was the same for killing the different mutant types. To
do this, we compared the mutation score for HOMs and FOMs in
the seven different CS subjects.
Table 7 shows the mutation score summarized for each CS subject
and by each mutant type. Tables 8-9 (see Appendix) show the
detailed mutation scores for each CS Subject and mutant type
(FOM and HOM) respectively.

Table 7: Mutation Score by Mutant type
Mutant Type VC MT SG ER OCR SS IM
FOM 0.87 0.80 0.75 0.90 0.75 0.82 0.74
HOM 1.00 1.00 0.89 1.00 0.96 1.00 1.00

Fig. 8 depicts the box-plot of our collected data for mutation score
per mutant type. As the results show, the values of mutation score
gave a better value for HOM than for FOM.

Figure 8. Box-plot-of data for Test Suite Adequacy

As in the analysis (Q1), Shapiro-Wilks tests were performed for
each mutant type related to the adequacy of the test suites. Since
the value of Sig. for FOM was >0.05 (0.307), this variable had a
normal distribution. For HOM the Sig. value was 0, which meant
this variable did not have a normal distribution. Considering both
mutant types as independent groups, we selected the Mann-
Whitney U Test (non-parametric test) to evaluate the hypothesis.
From this data, it can be concluded that the mutation score in the
HOM group was statistically significantly higher than the FOM
group, which meant that we rejected the null hypothesis H30 and
concluded that “The test suite adequacy (mutation score) is different
for different mutant types;(U = 1, p=0.002< 0.05)”.

4.4 Discussion
Our main results regarding CoSTest’s effectiveness and the
adequacy of the test suites are the following: mutant type can
influence these two variables, with better effectiveness and test
suite adequacy in high order mutants than in first order mutants.
So, test suites generated by CoSTest are effective at killing a large
number of mutants. However, there are fault types that our test
suites cannot detect, as explained below.

Effectiveness Assessment of an Early Testing Technique using… EASE’2017, June 2017, Karlskrona, Sweden

9

Thus, the mutants generated by the WAS2 mutation operator
(changes the association type, i.e. normal, composite) and WAS3
mutation operator (changes the member end multiplicity of an
Association, i.e. *-*, 0..1-0..1, *-0..1) cannot be killed (mutation
score=0) by a traditional mutation adequate test set.
Also, the fault types Incorrect Constraint and Incorrect
Generalization injected by the mutation operators WCO1, WCO3,
WCO4, WCO5, WCO8 and WGE were hard to detect (mutation
score <0.7). This showed the weakness of test cases in testing
some constraints, such as derivation rules, which needed to be
executed in reverse order when there was a relation between
classes that affected the computed result. For example, they first
calculated the total of the expense report and then the total of the
expense report details. This means these test cases will have to be
improved.
Additionally, we found that a lower mutation score for some
mutants related with constraints (WCOx) was because the test
suites only consider coverage at element level and not at
constraint level (i.e. condition branch).
We therefore plan to include test cases with values to make sure
that different conditions (e.g. > vs >=) will be tested. However, the
coverage analysis is important to detect defects when the
assertions assert only return values and not side effects (see Fig.

9) in which the coverage analysis is reduced, but all tests still pass.

Figure 9. Example of an assertion conditional

In addition, we found that CoSTest test suites do not test whether
the cardinalities of the association ends meet a certain limit (only
creating links according to the test scenario) thereby leading to
missed faults, such as an Incorrect Association injected by the
WAS3 mutation operator. As well as changing a navigable
association to a shared aggregation or vice versa (WAS2)
generates an equivalent mutant because “aggregation=shared”
has no semantic effect in an executable model using Alf. Thus,
another validation technique is required to validate these
elements’ properties (i.e. inspection of the CS).
Finally, one of the strengths of CoSTest test cases is that it can
detect types of defect about misunderstanding requirements (i.e.
”Missing” and “Unnecessary” types) that are not normally
detected at the CS level, by generating test cases based on user
requirements. In a previous work [15] we found a tendency to
report only defects related to verification, such as “Wrong” type
(e.g. incorrect) rather than defects related to validation.

5 THREATS TO VALIDITY
There are several threats that potentially affect the validity of our
study including threats to internal validity, threats to external
validity, and threats to construct validity.
Threats to internal validity are conditions that can affect the
dependent variables of the experiment without the researcher’s

knowledge. In our study, the selection of mutation operators is the
main threat to internal validity. According to Andrews et al. [1],
when using carefully selected mutation operators and after
removing equivalent mutants, the mutants can provide a good
indication of the fault detection ability of a test suite. Therefore,
in order to minimize this threat we used the MtUML tool [16] to
inject faults systematically, by avoiding non-valid and equivalent
mutants and optimizing the testing coverage. This tool
implements the mutation operators defined in a previous work
[12].
Threats to external validity are conditions that limit the ability to
generalize the results of our experiments to industrial practice.
This threat is reduced by using seven CS of different sizes (see
Section 3.5.1) and domain (e.g. information systems, games).
Moreover, a CS was taken from industry, some well-documented
CS were found in the literature (i.e. [8], [2] and [7]), and others
(i.e. ER, OCR, and VC) were selected because they contained the
relevant CS elements required to inject the faults.
Threats to construct validity refer to the suitability of our
evaluation metrics. We used well-known metrics to measure the
effectiveness (rate of number of faults and number of detected
fault types) [28] and the adequacy of the test suites (mutation
score) [20]. We therefore believe there is little threat to the
construct validity.

6 CONCLUSIONS AND FUTURE WORK
Test cases are important artefacts in any software product as a
support to users (e.g. modeller/tester/developer) for checking the
reliability of their software product.
In this paper, we evaluated empirically the test cases generated by
the CoSTest tool with respect to its effectiveness in terms of its
fault detection in Conceptual Schemas and the adequacy of the
test suite.
Fault detection effectiveness was measured in terms of rate of
faults detection and their causes (fault type) by the test suites. Test
suite adequacy was measured in terms of the mutation score
value. Our evaluation included the analysis of the variables for
mutant types (FOM and HOM).
The Effectiveness and adequacy of the test suites was affected by
the mutant type and better results were obtained in detecting
faults in HOM. These results suggest that the CoSTest technique
is robust in detecting types of defects that are not normally
detected at the CS level.
However, some mutation operators achieved a value lower than
0.7 in the mutation score. These results suggest that the test suite
should include a test for certain characteristics of CS elements,
such as associations, and improve the coverage at the constraint
level in order to enhance the effectiveness of the test suites.
In future work we plan to identify features of test cases that would
lead to improved effectiveness. We also intend to replicate this
experiment on a wide variety of subjects to verify the results,
including at least two CS (subjects) per domain.

EASE’2017, June 2017, Karlskrona, Sweden M. F. Granda et al.

10

A APPENDIX
Table 8. Mutation Score of CoSTest Test Suites for First Order Mutants

CS
MO

VC MT SG ER OCR SS IM
K S MS K S MS K S MS K S MS K S MS K S MS K S MS

UPA 6 0 1.00 13 0 1.00 19 0 1.00 24 0 1.00 16 0 1.00 32 0 1.00 13 0 1.00
WCO1 0 2 0.00 6 1 0.86 6 3 0.67 1 0 1.00 0 3 0.00
WCO3 1 0 1.00 4 1 0.80 1 1 0.50
WCO4 2 0 1.00 7 8 0.54 6 2 0.75 2 0 1.00
WCO5 1 0 1.00 6 5 0.55 8 3 0.73 6 0 1.00 2 0 1.00 23 0 1.00
WCO6 3 0 1.00 4 7 0.36 2 0 1.00 5 0 1.00 2 0 1.00 20 0 1.00
WCO7 1 0 1.00
WCO8 40 0 1.00 6 0 1.00 28 13 0.68 20 0 1.00 21 2 0.91 9 4 0.69
WCO9 1 0 1.00
WAS1 2 0 1.00 4 0 1.00 7 0 1.00 6 0 1.00 4 0 1.00
WAS2 0 4 0.00 0 5 0.00 0 11 0.00 0 8 0.00 0 10 0.00 0 9 0.00 0 4 0.00
WAS3 0 6 0.00 0 12 0.00 0 21 0.00 0 18 0.00 0 12 0.00
WCL1 5 0 1.00 6 0 1.00 11 0 1.00 7 0 1.00 10 0 1.00 9 0 1.00 6 0 1.00
WOP2 1 0 1.00 7 0 1.00 8 0 1.00 17 0 1.00 6 0 1.00 23 0 1.00 7 0 1.00
WPA 1 0 1.00 9 0 1.00 9 0 1.00 17 0 1.00 3 0 1.00 26 0 1.00
MCO 15 0 1.00 9 0 1.00 11 0 1.00 15 0 1.00 13 0 1.00 11 0 1.00 0 8 0.00
MAS 2 0 1.00 4 0 1.00 7 0 1.00 6 0 1.00 0 4 0.00
MPA 1 0 1.00 10 0 1.00 11 0 1.00 23 0 1.00 6 0 1.00 32 0 1.00 7 0 1.00
All 80 12 0.87 68 17 0.80 122 45 0.74 149 17 0.90 101 33 0.75 161 35 0.82 80 29 0.74

Table 9. Mutation Score of CoSTest Test Suites for High Order Mutants
CS

MO
VC MT SG ER OCR SS IM

K S MS K S MS K S MS K S MS K S MS K S MS K S MS
WCO2 3 0 1.00 3 0 1.00 3 0 1.00 3 0 1.00 3 0 1.00 3 0 1.00 3 0 1.00
WGE 1 2 0.33 2 1 0.67
WAT1 3 0 1.00 3 0 1.00 3 0 0.00 3 0 1.00 3 0 1.00 3 0 1.00 3 0 1.00
WAT2 2 0 1.00 3 0 1.00 3 0 1.00 1 0 1.00 1 0 1.00
WAT3 3 0 1.00 3 0 1.00 3 0 1.00 3 0 1.00 3 0 1.00 3 0 1.00 3 0 1.00
MGE 3 0 1.00 3 0 1.00
MCL 3 0 1.00 3 0 1.00 3 0 1.00 3 0 1.00 3 0 1.00 3 0 1.00 3 0 1.00
MAT 3 0 1.00 3 0 1.00 3 0 1.00 3 0 1.00 3 0 1.00 3 0 1.00 3 0 1.00
MOP 3 0 1.00 3 0 1.00 2 1 0.67 3 0 1.00 3 0 1.00 3 0 1.00 3 0 1.00
All 20 0 1.00 18 0 1.00 24 3 0.89 21 0 1.00 24 1 0.96 19 0 1.00 18 0 1.00

REFERENCES
[1] Andrews, J.H. et al. 2005. Is mutation an appropriate tool for testing

experiments? Proceedings. 27th International Conference on Software Engineering,
2005. ICSE 2005. (2005), 402–411.

[2] Case Study: Conceptual Modeling of Basic Sudoku: 2006.
http://guifre.lsi.upc.edu/Sudoku.pdf.

[3] Charness, G. et al. 2012. Experimental methods: Between-subject and within-
subject design. Journal of Economic Behavior and Org.. 81, 1, 1–8.

[4] CyberChair: http://www.borbala.com/cyberchair/.
[5] DeMillo, R. et al. 1978. Hints on Test Data Selection: Help for the Practicing

Programmer. Computer. 11, (1978), 34–41.
[6] España, S. et al. 2009. Communication Analysis: A Requirements Engineering

Method for Information Systems. 21st International Conference on Advanced
Information Systems Engineering (2009), 530–545.

[7] España, S. et al. 2011. Integration of Communication Analysis and the OO-
Method: Rules for the manual derivation of the Conceptual Model.

[8] España, S. et al. 2011. Technical Report Communication Analysis and the OO-
Method : Manual Derivation of the Conceptual Model the SuperStationery Co.
Lab Demo.

[9] Fabbri, S.C.P.F. et al. 1994. Mutation Analysis Testing for Finite State Machines.
5th International Symposium on Software Reliability Engineering (1994), 220–
229.

[10] Farooq, U. and Lam, C.P. 2008. Mutation Analysis for the Evaluation of AD
Models. International Conference on Computational Intelligence for Modelling
Control and Automation, CIMCA. (2008), 296–301.

[11] Ferraz, S. et al. 1999. Mutation Testing Applied to Validate Specifications Based
on Statecharts. Software Reliability Engineering, Proceedings. 10th
International Symposium on (Boca Raton, FL, 1999), 210–219.

[12] Granda, M.F. et al. 2016. Mutation Operators for UML Class Diagrams. CAiSE
2016 (2016).

[13] Granda, M.F. 2013. Testing-Based Conceptual Schema Validation in a Model-
Driven Environment. CAiSE Doctoral Consortium (Valencia, 2013).

[14] Granda, M.F. et al. 2014. Towards the automated generation of abstract test cases
from requirements models. 1st Int. Workshop on Requirements Engineering and
Testing (Karlskrona, Sweden, Aug. 2014), 39–46.

[15] Granda, M.F. et al. 2015. What do we know about the Defect Types detected in
Conceptual Models ? IEEE 9th Int. Conference on Research Challenges in
Information Science (RCIS) (Athens, Greece, 2015), 96–107.

[16] Granda, M.F. and Condori-fernández, N. 2016. A Model-level Mutation Tool to
Support the Assessment of the Test Case Quality. 25TH Int. Conf. on
Information Systems Development (ISD2016 POLAND) (2016).

[17] Hamlet, R.G. 1977. Testing Programs with the Aid of a Compiler. IEEE
Transactions on Software Engineering. SE-3, 4 (1977), 279 – 290.

[18] Jia, Y. and Harman, M. 2011. An Analysis and Survey of the Development of
Mutation Testing. Soft. Engineering, IEEE Transactions on. 37, 5, 1–31.

[19] Jia, Y. and Harman, M. 2009. Higher Order Mutation Testing. Information and
Software Technology. 51, 10 (2009), 1379–1393.

[20] Jing, C. et al. 2008. Mutation Testing of Protocol Messages Based on Extended
TTCN-3. 22nd International Conference on Advanced Information Networking
and Applications (Okinava, Japan, 2008), 667–674.

[21] Juristo, N. and Moreno, A.M. Basics of Soft. Engineering Experimentation.
[22] Morgan, J.A. et al. 1997. Predicting fault detection effectiveness. Proceedings

Fourth International Soft. Metrics Symposium (1997), 82–89.
[23] Object Management Group 2013. Action Language for Foundational UML (ALF).
[24] Object Management Group 2012. Semantics of a Foundational Subset for

Executable UML Models (fUML).
[25] Object Management Group: www.omg.org.
[26] Pastor, O. and Molina, J.C. 2007. Model-Driven Architecture in Practice.

Springer Berlin Heidelberg.
[27] van Solingen, R. and Berghout, E. 1999. The Goal/Question/Metric Method – A

Practical Guide for Quality Improvement of Soft. Development. McGraw-Hill.
[28] Vos, T.E.J. et al. 2012. A Methodological Framework for Evaluating Software

Testing Techniques and Tools. 2012 12th International Conference on Quality
Software. (2012), 230–239.

[29] Wholin, C. et al. 2012. Experimentation in Software Engineering.

