
Evolving Rules for Action Selection in
Automated Testing via Genetic Programming -

A First Approach

Anna I. Esparcia-Alcázar(B), Francisco Almenar,
Urko Rueda, and Tanja E.J. Vos

Research Center on Software Production Methods (PROS),
Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain

{aesparcia,urueda,tvos}@pros.upv.es
http://www.testar.org

Abstract. Tools that perform automated software testing via the user
interface rely on an action selection mechanism that at each step of
the testing process decides what to do next. This mechanism is often
based on random choice, a practice commonly referred to as monkey
testing. In this work we evaluate a first approach to genetic programming
(GP) for action selection that involves evolving IF-THEN-ELSE rules;
we carry out experiments and compare the results with those obtained
by random selection and also by Q-learning, a reinforcement learning
technique. Three applications are used as Software Under Test (SUT) in
the experiments, two of which are proprietary desktop applications and
the other one an open source web-based application. Statistical analysis
is used to compare the three action selection techniques on the three
SUTs; for this, a number of metrics are used that are valid even under
the assumption that access to the source code is not available and testing
is only possible via the GUI. Even at this preliminary stage, the analysis
shows the potential of GP to evolve action selection mechanisms.

Keywords: Automated testing via the GUI · Action selection for
testing · Testing metrics · Genetic Programming

1 Introduction

The relevance of testing a software application at the Graphical User Interface
(GUI) level has often been stated due to several reasons, the main being that it
implies taking the user’s perspective and is thus the ultimate way of verifying a
program’s correct behaviour. Current GUIs can account for 45–60% of the source
code [2] in any application and are often large and complex; hence, it is diffi-
cult to test applications thoroughly through their GUI, especially because GUIs
are designed to be operated by humans, not machines. Furthermore, they are
usually subject to frequent changes motivated by functionality updates, usabil-
ity enhancements, changing requirements or altered contexts. Automating the
c© Springer International Publishing AG 2017
G. Squillero and K. Sim (Eds.): EvoApplications 2017, Part II, LNCS 10200, pp. 82–95, 2017.
DOI: 10.1007/978-3-319-55792-2 6



Evolving Rules for Action Selection in Automated Testing via GP 83

process of testing via the GUI is therefore a crucial task in order to minimise
time-consuming and tedious manual testing.

The existing literature in testing via the User Interface covers three
approaches: capture-and-replay (C&R), which involves recording user interac-
tions and converting them into a script that can be replayed repeatedly, visual-
based which relies on image recognition techniques to visually interpret the
images of the target UI [3], and traversal-based, which uses information from
the GUI (GUI reflection) to traverse it [1], and can be used to check some gen-
eral properties. Of the three, the latter group is considered the most resilient to
changes in the SUT.

The designer of any automated tool for carrying out traversal-based test-
ing is faced with a number of design choices. One of the most relevant is the
decision of the action selection mechanism which, given the current state (or
window) the system is in, involves answering the question “what do I do next?”.
Although most tools leave this to purely random choice (a procedure known
as monkey testing), some authors have resorted to metaheuristics or machine
learning techniques in order to decide what action to execute at each step of the
testing sequence, such as Q-learning [7] and Ant Colony Optimisation [5]. Here
we present a first approach to using Genetic Programming (GP) to evolve action
selection rules in traversal-based software testing. There is a large body of work
that shows the power of GP to evolve programs and functions and, more specif-
ically, rules; on the other hand, GP has also previously been used in software
testing, e.g. by [11,12] but, to the best of our knowledge, not to evolve action
selection rules.

In our approach GP evolves a population of rules whose quality (or fitness)
is evaluated by using each one of them as the action selection mechanism in a
traversal-based software testing tool. In order to do this suitable metrics must be
defined and a number of options are available in the literature. For instance, in
[6] metrics are proposed for event driven software; [10] defines a coverage criteria
for GUI testing, while in [4] the number of crashes of the SUT, the average time
it takes to crash and the reproducibility of these crashes are used. In this work
we will follow the approach taken by [7], who propose four metrics which are
suitable for testing web applications, based on the assumption that source code
is not available.

In order to carry out our study we chose three applications as the SUTs:
the Odoo enterprise resource planning (ERP) system, a software testing tool
called Testona and the PowerPoint presentation software. These are very differ-
ent types of SUT: while Odoo is an open source web application, both Testona
and Powerpoint are proprietary desktop applications. Statistical analysis was
carried out on the results of the three action selection methods over the three
SUTs.

The rest of this paper is structured as follows. Section 2 describes the action
selection mechanism using genetic programming. Section 3 introduces the metrics
used for quality assessment of the testing procedure. Section 4 summarises the
experimental set up, the results obtained and the statistical analysis carried out;



84 A.I. Esparcia-Alcázar et al.

it also highlights the problems encountered. Finally, in Sect. 5 we present some
conclusions and outline areas for future work.

2 Genetic Programming for Action Selection in
GUI-Based Automated Testing

Tree-based Genetic Programming is the original form of GP as introduced by
Koza [8]. It involves the evolution of a population of individuals, or candidate
solutions, that can be represented as expression trees, given suitable nodes (func-
tions) and leaves (terminals) are defined for the problem at hand. In this work
we represent individuals as IF-THEN-ELSE rules that, given the current state of
the SUT, pick the next action to execute. An example rule would be something
like this:

IF previousAction EQ typeInto
AND nLeftClick LE nTypeInto
PickAny typeInto
ELSE
PickAnyUnexecuted

According to this rule, if the last executed action (previousAction) was enter-
ing text in a box (typeInto) and the number of clickable items (nLeftClick) is less
than or equal to the number of text boxes (nTypeInto), then the next action will
be typing text in any of the text boxes (PickAny typeInto); otherwise, a ran-
dom action will be chosen that has not been executed before (PickAnyUnex-
ecuted). Note that the text entered would be chosen at random.

The GP engine chosen was ponyGP1 and the set up for the experiments is
given in Table 1. The fitness of each individual was calculated by using it as the
action selection rule for the traversal-based tool TESTAR2; metrics are collected
in the process, one of which is used as the fitness value.

Figure 1 shows how the genetic programming process could be embedded
within the testing tool (TESTAR here). The live version of TESTAR tests the
SUT at hand using the best action selection rule found so far, while, in paral-
lel, the evolutionary algorithm uses a sandbox version of TESTAR in order to
evaluate the fitness of the new individuals. When a better individual is found,
it is sent to the live TESTAR, that carries on testing using the new individual
for action selection.

3 Testing Performance Metrics

As stated in Sect. 1, a number of metrics have been defined in the literature to
assess the quality of the testing, e.g. those given by [10] or [4]. However, two main
1 Developed by Erik Hemberg from the ALFA Group at MIT CSAIL http://groups.

csail.mit.edu/EVO-DesignOpt/PonyGP/out/index.html.
2 http://www.testar.org.

http://groups.csail.mit.edu/EVO-DesignOpt/PonyGP/out/index.html
http://groups.csail.mit.edu/EVO-DesignOpt/PonyGP/out/index.html
http://www.testar.org


Evolving Rules for Action Selection in Automated Testing via GP 85

Fig. 1. The evolutionary process embedded within a traversal-based testing tool.

issues can be found with them: namely, that they either imply having access to
the SUT source code (which is not always the case) or that they focus on errors
encountered and reveal nothing about to what extent the SUT was explored
(which is particularly relevant if no errors are detected). For these reasons, we
decided on the following metrics, as defined by [7]:

– Abstract states. This metric refers to the number of different states, or
windows in the GUI, that are visited in the course of an execution. An abstract
state does not take into account modifications in parameters; for instance, a
window containing a text box with the text “tomato” would be considered
the same abstract state as the same window and text box containing the text
“potato”.

– Longest path. This is defined as the longest sequence of non-repeated con-
secutive states visited.

– Minimum and maximum coverage per state. The state coverage is
defined as the rate of executed over total available actions in a given
state/window; the metrics are the highest and lowest such values across all
windows.

It is interesting to note that longest path and maximum coverage are in a
way opposed metrics, one measuring exploration and the other exploitation of
the SUT.



86 A.I. Esparcia-Alcázar et al.

Table 1. Genetic programming parameters.

Feature Value

Population size 20

Max tree size 20

Functions Pick, PickAny, PickAnyUnexecuted,
AND, OR, LE, EQ, NOT

Terminals nActions, nTypeInto, nLeftClick,
previousAction, RND,
typeLeftClick, typeTypeInto, Any

Evolutionary operators Mutation and crossover

Evolutionary method Steady state

Selection method Tournament of size 5

Termination criterion Generating more than 30 different states

4 Experiments and Results

4.1 Procedure

We have taken a simplified approach which involves evolving action selection
rules by genetic programming using PowerPoint as the sandbox SUT and then
validating the best evolved rule by using it to test the three different SUTs
described below. For the latter phase we carried out 30 runs of 1000 actions
each. In this way we can ascertain how well the GP-evolved rule generalises to
SUTs not encountered during evolution.

The best evolved rule was as follows:

IF nLeftClick LT nTypeInto
PickAny leftClick
ELSE
PickAnyUnexecuted

In order to carry out statistical comparisons, the validation process was
repeated using random and Q-learning-based action selection. Q-learning [13] is a
model-free reinforcement learning technique in which an agent, at a state s, must
choose one among a set of actions As available at that state. By performing an
action a ∈ As, the agent can move from state to state. Executing an action in a spe-
cific state provides the agent with a reward (a numerical score which measures the
utility of executing a given action in a given state). The goal of the agent is to max-
imise its total reward, since it allows the algorithm to look ahead when choosing
actions to execute. It does this by learning which action is optimal for each state.
The action that is optimal for each state is the action that has the highest long-term
reward. The choice of the algorithm’s two parameters, maximum reward, Rmax

and discount γ, will promote exploration or exploitation of the search space. In
our case we chose those that had provided best results in [7].



Evolving Rules for Action Selection in Automated Testing via GP 87

A summary of the experimental settings is given in Table 2.

Table 2. Experimental set up.

Set Action selection
algorithm

Parameters Max. actions
per run

Runs

Ev GP-evolved rule See Table 1 1000 30

Qlearning Q-learning Rmax = 9999999; γ = 0.95 1000 30

RND Random N/A 1000 30

4.2 The Software Under Test (SUT)

We used three different applications in order to evaluate our action selection app-
roach, namely Odoo, PowerPoint and Testona. Odoo is an open source Enter-
prise Resource Planning software consisting of several enterprise management
applications; of these, we installed the mail, calendar, contacts, sales, inventory
and project applications in order to test a wide number of options. Power-
Point is a slide show presentation program part of the productivity software
Microsoft Office. It is currently one of the most commonly used presentation
programs available. Testona (formerly known as Classification Tree Editor) is
a software testing tool that runs on Windows. It implements tree classification,
which involves classifying the domain of the application under test and assigning
tests to each of its leaves.

4.3 Statistical Analysis

We run the Kruskal-Wallis non parametric test, with α = 0.05, on the results for
the three action selection mechanisms. The test shows that all the metrics have
significant differences among the sets. Running pair-wise comparisons by means
of the Mann-Whitney-Wilcoxon test, provides the results shown in the boxplots
contained in Figs. 2, 3, 4, 5 and 6; these results are ordered in Table 3, where
the shaded column is the best option. It can be seen that the GP approach wins
in the abstract states and longest path metrics for both Powerpoint and Odoo
and comes second in Testona, where, surprisingly, random testing performs best
(Fig. 7).

One metric we have not considered in the statistical analysis is the number
of failures encountered, shown in Table 4. Here we can see that in general, the
evolutionary approach finds the most real failures3.

3 Note that ascertaining whether these failures are associated to any defects is beyond
the scope of the TESTAR tool.



88 A.I. Esparcia-Alcázar et al.

Fig. 2. Boxplots for the abstract states and longest path metrics with the results
obtained for Odoo



Evolving Rules for Action Selection in Automated Testing via GP 89

Fig. 3. Boxplots for the maximum and minimum coverage metrics with the results
obtained for Odoo



90 A.I. Esparcia-Alcázar et al.

Fig. 4. Boxplots for the abstract states and longest path metrics with the results
obtained for PowerPoint.



Evolving Rules for Action Selection in Automated Testing via GP 91

Fig. 5. Boxplots for the maximum and minimum coverage metrics with the results
obtained for PowerPoint.



92 A.I. Esparcia-Alcázar et al.

Fig. 6. Boxplots for the abstract states and longest path metrics with the results
obtained for Testona.



Evolving Rules for Action Selection in Automated Testing via GP 93

Fig. 7. Boxplots for the maximum and minimum coverage metrics with the results
obtained for Testona.



94 A.I. Esparcia-Alcázar et al.

Table 3. Results of the statistical comparison for all algorithms and metrics, in the
three different SUTs. The shaded column represents the best choice, the remaining
ones are in order of preference.

PowerPoint Set

Abstract states Ev Q-learning RND
Longest path Ev Q-learning RND

Maximum coverage per state RND Q-learning Ev
Minimum coverage per state Q-learning Ev RND

teSoodO

Abstract states Ev Q-learning RND
Longest path Ev Q-learning RND

Maximum coverage per state Ev Q-learning RND
Minimum coverage per state RND Q-learning Ev

teSanotseT

Abstract states RND Ev Q-learning
Longest path RND Ev Q-learning

Maximum coverage per state Ev Q-learning RND
Minimum coverage per state Ev Q-learning RND

Table 4. Number of failures encountered per SUT and algorithm.

SUT Algorithm Errors Freezes False positives

Odoo Ev 4 0 2

RND 0 0 4

Q-learning 1 1 6

PowerPoint Ev 1 0 5

RND 0 1 2

Q-learning 0 1 5

Testona Ev 2 2 3

RND 0 3 6

Q-learning 1 1 3

5 Conclusions

We have shown here the successful application of a genetic programming-evolved
action selection rule within an automated testing tool. The GP-evolved rule was
also compared to Q-learning and random, or monkey testing. The performance
was evaluated on three SUTs (PowerPoint, Odoo and Testona) and according to
four metrics. Statistical analysis reveals the superiority of the GP approach in
PowerPoint and Odoo, although not in Testona.



Evolving Rules for Action Selection in Automated Testing via GP 95

Further work will involve developing more complex rules by introducing new
functions and terminals. A further step ahead will also involve eliminating the
fitness function and guiding the evolution based on novelty only [9].

Acknowledgments. This work was partially funded by project SHIP (SMEs and
HEIs in Innovation Partnerships, ref: EACEA/A2/UHB/CL 554187).

References

1. Aho, P., Menz, N., Rty, T.: Dynamic reverse engineering of GUI models for testing.
In: Proceedings of the 2013 International Conference on Control, Decision and
Information Technologies (CoDIT 2013), May 2013

2. Aho, P., Oliveira, R., Algroth, E., Vos, T.: Evolution of automated testing of
software systems through graphical user interface. In: International Conference on
Advances in Computation, Communications and Services, Valencia (2016)

3. Alegroth, E., Feldt, R., Ryrholm, L.: Visual GUI testing in practice: challenges,
problems and limitations. Empirical Softw. Eng. 20, 694–744 (2014)

4. Bauersfeld, S., Vos, T.E.J.: User interface level testing with TESTAR: what about
more sophisticated action specification and selection? In: Post-proceedings of the
Seventh Seminar on Advanced Techniques and Tools for Software Evolution, SAT-
ToSE 2014, L’Aquila, Italy, 9–11 July 2014. pp. 60–78 (2014). http://ceur-ws.org/
Vol-1354/paper-06.pdf

5. Bauersfeld, S., Wappler, S., Wegener, J.: A metaheuristic approach to test sequence
generation for applications with a GUI. In: Cohen, M.B., Ó Cinnéide, M. (eds.)
SSBSE 2011. LNCS, vol. 6956, pp. 173–187. Springer, Heidelberg (2011). doi:10.
1007/978-3-642-23716-4 17

6. Chaudhary, N., Sangwan, O.: Metrics for event driven software. Int. J. Adv. Com-
put. Sci. Appl. (IJACSA) 7(1), 85–89 (2016)

7. Esparcia-Alcázar, A.I., Almenar, F., Mart́ınez, M., Rueda, U., Vos, T.E.:
Q-learning strategies for action selection in the TESTAR automated testing tool.
In: Proceedings of META 2016 6th International Conference on Metaheuristics and
Nature Inspired Computing, pp. 174–180 (2016)

8. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means
of Natural Selection. MIT Press, Cambridge (1992). http://mitpress.mit.edu/
books/genetic-programming

9. Lehman, J., Stanley, K.O.: Novelty search and the problem with objectives. In:
Riolo, R., Vladislavleva, E., Moore, J.H. (eds.) Genetic Programming Theory and
Practice IX. Genetic and Evolutionary Computation, pp. 37–56. Springer, New
York (2011)

10. Memon, A.M., Soffa, M.L., Pollack, M.E.: Coverage criteria for GUI testing. In:
Proceedings of ESEC/FSE 2001, pp. 256–267 (2001)

11. Seesing, A., Gross, H.G.: A genetic programming approach to automated test gen-
eration for object-oriented software. Int. Trans. Syst. Sci. Appl. 1(2), 127–134
(2006)

12. Wappler, S., Wegener, J.: Evolutionary unit testing of object-oriented software
using strongly-typed genetic programming. In: Proceedings of the 8th Annual Con-
ference on Genetic and Evolutionary Computation, GECCO 2006, pp. 1925–1932.
ACM, New York (2006). http://doi.acm.org/10.1145/1143997.1144317

13. Watkins, C.: Learning from Delayed Rewards. Ph.D. thesis, Cambridge University
(1989)

http://ceur-ws.org/Vol-1354/paper-06.pdf
http://ceur-ws.org/Vol-1354/paper-06.pdf
http://dx.doi.org/10.1007/978-3-642-23716-4_17
http://dx.doi.org/10.1007/978-3-642-23716-4_17
http://mitpress.mit.edu/books/genetic-programming
http://mitpress.mit.edu/books/genetic-programming
http://doi.acm.org/10.1145/1143997.1144317

