
Searching for the Best Test ?
Tanja E.J. Vos

Open Universiteit
Heerlen, The Netherlands
Email: tanja.vos@ou.nl

Pekka Aho
VTT Technical Research Centre of Finland

Oulu, Finland
email: pekka.aho@vtt.fi

Keywords-Software test automation, Random testing, Graphi-
cal User Interface testing, Search-based testing, Machine learning

I. INTRODUCTION

Random testing has been controversial throughout the his-
tory. In the early 70s opinions about random testing were
divided: Girard and Rault (1973) call it a valuable test case
generation scheme [11]. This is confirmed by Thayer, Lipow
and Nelson (1978) in their book on software reliability [21]
they say it is the necessary final step in the testing activities.
However, Glenford Myers (1979) in his seminal work on the
art of Software Testing [18] denominates random testing as
probably the poorest testing method.

In the early 80s, partition testing is advocated [25]. It is
intuitive to understand why this would be a good testing
strategy: use domain knowledge of the System Under Test
(SUT) to partition the input domain; group together similar
cases and then choose one from each domain. We can partition
according to branches, functionalities, use cases or mutant
testing strategies. If a particular domain contains an failure,
then many test cases in that domain would find that failure.

In 1984, however, Duran and Ntafos [9], carried out a series
of experiments in which they showed that random testing could
be more effective than the commonly used partition testing.
Hamlet and Taylor [15] repeated more experiments and came
to the same results. Weyuker together with Jeng compared the
two testing approaches from an analytical point of view [24].
However, their results pointed in the same direction again:
a clear superiority of partition testing could not be stated;
instead, it turned out that, in effectiveness, partition testing
can be better, worse or the same as random testing, depending
on the adequacy of the chosen partition with respect to the
location of the failure-causing inputs.

These were counter intuitive results that opened the doors
to a large body of literature on the properties and benefits
of random testing. Many authors investigated the conditions
under which partition testing can be more effective than
random testing or the other way around (see for example [22],
[8], [14], [2]).

Some recent interesting studies on the topic show that we
have by no means investigated enough on random testing.
Arcuri et al. [3] who show that random testing is an instance of
the coupons collector problem, a very well known probabilistic
problem. This way many theoretical results from the proba-
bility field can be re-used and again it is shown that random
testing is not a bad testing strategy in many occasions. Böhme
and Paul [7] present a study that analysis efficiency of random

Fig. 1. TESTAR testing flow

testing. Basically they conclude that: even the most effective
testing technique is inefficient compared to random testing if
generating a test case takes relatively too long.

II. RANDOM TESTING AT THE GUI LEVEL

In [6], [4], [23] we present several industrial case studies
evaluating a random testing tool called TESTAR 1. The
tool automatically and dynamically generates random test
sequences at the Graphical User Interface (GUI) level of
an application. The way it works is summarized in Figure
1: user actions are being derived from a tree model that is
being automatically derived from scanning the GUI through
the Accessibility API; an action is selected at random and
executed; the new state of the GUI is inspected for failures by
an oracle and if we want to test more a new cycly of scanning,
selection and execution is started.

Our case studies shown that this type of random testing
is very useful in industrial practice, e.g. in [4] we tested an
desktop ERP application that had been under development
for the past 20 years. It took us 3 working days to deploy
the tool in the industrial environment and after 91 hours of
unattended random testing we found 10 previously unknown
failures marked as critical by the company. Quite a good result
again for random testing.

For automated GUI testing this is even better news. The
TESTAR approach does not suffer as much from the mainte-
nance problem that threatens other techniques for automated

1Acronym for TESTAutomation at the user inteRface level, see
www.testar.org



testing at the GUI level like capture/replay [19], [12], [16].
The TESTAR approach is scriptless, we do not record test
cases nor scripts. The tree model is inferred for every state,
which implies that tests will run even when the GUI changes.
So TESTAR reduces the maintenance problem and generates
quick random test cases. Using Böhme and Paul’s conclusion
in [7] our hypothesis is that even the most effective testing
technique might be inefficient compared to TESTAR if gen-
erating and maintaining test cases takes relatively too long.

III. HOW CAN WE IMPROVE IT MORE?

Some test cases are be more likely to reveal faults than
others. What if we do not select and action at random in Figure
1, but try to optimize some criteria. The best criteria would be
Failure Detection Rate (FDR), but when testing the number of
failures in a system is evidently not known a priori. We need
surrogate measures that are correlated to the FDR. We need
to come up with new measures related to coverage, diversity
and novelty. In [5], [10], [1] we used Q-learning and tried to
optimize the amount of different actions that were executed
in the tests. Selection in Figure 1 was hence based on the Q-
value that was learned for each (state, action)- pair. In [23] we
used ant-colony to optimize the length of the call trees that
are induced by the test sequences. The larger the call tree, the
more aspects of the SUT are tested according to []. Selection
in Figure 1 was based on the pheromone values of the ant trails
(i.e. the test sequences). Choices (i.e. actions) that appear in
good trails (i.e. have a large call tree) accumulate pheromones.

This way we could write a lot of papers using differ-
ent search based strategies, or machine learning algorithms,
that all compare different action selection strategies for yet
different measures. However, we do not want to make an
instance for each action selection strategy. Even less because
effectiveness of action selection strategies might depend on
the SUT we are testing.

IV. THE ROAD AHEAD: LEARN THE TOOL HOW TO TEST

Why not let TESTAR search for, or learn, what the best
action selection strategy is for a SUT. Like drones: these are
not programmed with instructions telling them how to fly,
but are programmed with code instructing them to learn how
to fly. We are currently working on the evaluation of a first
approach using genetic programming [17] for action selection
that evolves IF-THEN-ELSE rules. The next steps will be the
use of machine learning techniques. Other challenges onthe
road ahead are to find more (surrogate) measures that on the
one hand can give us more information about the effectiveness
of our testing and on the other hand can drive the evolution
and learning of the action selection strategy. We need to not
only measure these metrics during our experiments, but we
need to embed them in formal testing theory [20] to enable the
analytical study of test effectiveness. Also, if we can formalize
how well the graphs that are being generated by TESTAR
represent the structure of software [13]. Then we can derive
properties about for example the fault finding probabilities and
how well our software has been tested.

REFERENCES

[1] F. Almenar, A. I. Esparcia-Alcázar, M. Martı́nez, and U. Rueda. Au-
tomated testing of web applications with TESTAR - lessons learned
testing the odoo tool. In Search Based Software Engineering - 8th
International Symposium, SSBSE 2016, Raleigh, NC, USA, October 8-
10, 2016, Proceedings, pages 218–223, 2016.

[2] A. Arcuri and L. Briand. Adaptive random testing: An illusion of
effectiveness? In International Symposium on Software Testing and
Analysis, ISSTA, pages 265–275, NY, USA, 2011. ACM.

[3] A. Arcuri, M. Z. Iqbal, and L. Briand. Random testing: Theoretical
results and practical implications. IEEE TSE, 38(2):258–277, 2012.

[4] S. Bauersfeld, A. de Rojas, and T. Vos. Evaluating rogue user testing in
industry: An experience report. In Research Challenges in Information
Science (RCIS), 2014 IEEE Eighth International Conference on, pages
1–10, May 2014.

[5] S. Bauersfeld and T. Vos. A reinforcement learning approach to
automated gui robustness testing. In Fast Abstracts of the 4th Symposium
on Search-Based Software Engineering (SSBSE), pages 7–12. IEEE,
2012.

[6] S. Bauersfeld, T. E. J. Vos, N. Condori-Fernández, A. Bagnato, and
E. Brosse. Evaluating the TESTAR tool in an industrial case study.
In 2014 ACM-IEEE International Symposium on Empirical Software
Engineering and Measurement, ESEM ’14, Torino, Italy, September 18-
19, 2014, page 4, 2014.

[7] M. Böhme and S. Paul. A probabilistic analysis of the efficiency of
automated software testing. IEEE TSE, 42(4):345–360, 2016.

[8] T. Y. Chen and Y. T. Yu. On the relationship between partition and
random testing. IEEE Trans. Softw. Eng., 20(12):977–980, Dec. 1994.

[9] J. W. Duran and S. C. Ntafos. An evaluation of random testing. IEEE
TSE, SE-10(4):438–444, July 1984.

[10] A. Esparcia-Alcazar, F. Almenar, M. Martinez, U. Rueda, and T. Vos.
Q-learning strategies for action selection in the testar automated testing
too. In 6th International Conferenrence on Metaheuristics and nature
inspired computing (META 2016), pages 130–137, 2016.

[11] E. Girard and J. C. Rault. A programming technique for software
reliability. 1973.

[12] M. Grechanik, Q. Xie, and C. Fu. Maintaining and evolving gui-
directed test scripts. In Proceedings of the 31st International Conference
on Software Engineering, ICSE ’09, pages 408–418, Washington, DC,
USA, 2009. IEEE Computer Society.

[13] J. F. Groote, R. van der Hofstad, and M. Raffelsieper. On the random
structure of behavioural transition systems. Science of Computer
Programming, 128:51 – 67, 2016.

[14] W. J. Gutjahr. Partition testing vs. random testing: The influence of
uncertainty. IEEE Trans. Softw. Eng., 25(5):661–674, Sept. 1999.

[15] D. Hamlet and R. Taylor. Partition testing does not inspire confidence. In
[1988] Proceedings. Second Workshop on Software Testing, Verification,
and Analysis, pages 206–215, Jul 1988.

[16] C. Kaner. Avoiding shelfware: A managers view of automated gui
testing. http://www.kaner.com/pdfs/shelfwar.pdf, 2002.

[17] J. R. Koza. Genetic Programming: On the Programming of Computers
by Means of Natural Selection. MIT Press, Cambridge, 1992.

[18] G. J. Myers. Art of Software Testing. John Wiley & Sons, Inc., New
York, NY, USA, 1979.

[19] Z. U. Singhera, E. Horowitz, and A. A. Shah. A graphical user interface
(gui) testing methodology. IJITWE, 3(2):1–18, 2008.

[20] M. Staats, M. W. Whalen, and M. P. Heimdahl. Programs, tests, and
oracles: The foundations of testing revisited. In Proceedings of the 33rd
International Conference on Software Engineering, ICSE ’11, pages
391–400, New York, NY, USA, 2011. ACM.

[21] T. A. Thayer, M. Lipow, and E. C. Nelson. Software Reliability. North-
Holland Pub. Co, Amsterdam, 1978.

[22] M. Z. Tsoukalas, J. W. Duran, and S. C. Ntafos. On some reliability
estimation problems in random and partition testing. IEEE Trans. Softw.
Eng., 19(7):687–697, July 1993.

[23] T. E. J. Vos, P. M. Kruse, N. Condori-Fernández, S. Bauersfeld, and
J. Wegener. TESTAR: Tool support for test automation at the user
interface level. Int. J. Inf. Syst. Model. Des., 6(3):46–83, July 2015.

[24] E. J. Weyuker and B. Jeng. Analyzing partition testing strategies. IEEE
TSE, 17(7):703–711, Jul 1991.

[25] E. J. Weyuker and T. J. Ostrand. Theories of program testing and the
application of revealing subdomains. IEEE TSE, SE-6(3):236–246, May
1980.


