
GUI-Profiling for
Performance and Coverage Analysis

Nico Beierle
Assystem Germany

Berlin, Germany
Email: nbeierle@assystem.com

Peter M. Kruse
Assystem Germany

Berlin, Germany
Email: pkruse@assystem.com

Tanja E.J. Vos
Open University, The Netherlands

Universitat Politecnica de Valencia, Spain
Email: tanja.vos@ou.nl, tvos@pros.upv.es

Abstract—Existing software analysis methods for performance
and coverage are typically tied to the source code of software ap-
plications. In this work, we extend these methods to the Graphical
User Interfaces (GUI) of applications, motivated by the desire to
bring the user perspective into focus of software quality assurance
and testing at the GUI level. We present and discuss various
profiling procedures, their advantages and disadvantages, the
arising challenges and the identified solutions. The identification
and classification of the GUI components recorded during the
monitoring process posed particular problems. The monitoring
and collection of data could be well implemented, while detailed
improvements in the evaluation of results are still necessary.

I. INTRODUCTION

Profiling [1] is a dynamic analysis method that studies the
behaviors of a software application during the execution phase.
This allows analysts to obtain specific and detailed information
of specific execution paths. This is in contrast to the static
analysis where this information is obtained without execution
from the source code. The corresponding tools, which enables
analysis of the software through profiling, are called profilers.

In this paper we propose to use profiling at another level,
namely the black-box testing of applications at the Graphical
User Interface (GUI) level. The user experience, especially
in the field of GUI applications, is an often underestimated
quality feature in software development. The efficiency of an
application as perceived by the user is generally differently
from the perception of the developer [2]. The typical user
only perceives the interaction with the user interface and
accordingly insists on a fluent usability of all components.

Since the GUI of a software application targets the users,
GUI testing should be done from a user’s perspective and
therefore intensify the testing of user aspects. Although the
classical context of profiling is the source code, we propose
that this can also be used when testing at the GUI level in a
user-oriented development and testing environment.

Besides profiling, there is another type of metric that we
want to borrow from source code analysis, namely coverage
for GUI components. These coverage metrics will give us
information on how well all aspects of the GUI have been
exercised during our tests such that the profiling information
can be used in context.

Coverage for GUI has not been extensively used and de-
scribed in the literature so far, as far as we know there is
only the work of Memon et al. [3]. However, especially when
developing GUI tests, it is useful to determine a coverage rate

for the events of the GUI components to provide the tester
with an impression of the components’ coverage rate.

In this paper, we describe our results of adapting, combining
and optimizing the existing techniques for performance and
coverage analysis into a prototype tool to be used when testing
at the GUI level. This will result in test results that are
more able to reflect the user’s perspective and to improve the
understanding of quality from a user’s perspective.

Our paper is structured as follows. Section II describes our
prototype implementation. Section III explains the concept
of GUI coverage. Section IV then details GUI performance.
Section V evaluates actual results and gives insights on the
prototype implementation. Section VI finally concludes and
presents future work.

II. PROTOTYPE

Our prototype tool for analyzing the GUI performance and
coverage at the run time of a System Under Test (SUT) can
basically be split up in three parts.

The first part implements the monitoring of the SUT to
be analyzed. Here the coverage of the GUI components and
the profiling information related to performance are collected
(the details of these are described in the next sections). The
application monitor is realized using a Java Agent.1 Java
Agents allow to instrument programs running on the Java
Virtual Machine. For performance reasons we use ASM Java
Bytecode manipulation.2 JSON is then used as the transfer
encoding [4] over a regular TCP connection to the server.

The second area provides the client, which represents the
results of the monitoring activities during the tests. The
application is implemented using the Angular framework3 as
a single-page application (SPA). Node.js, the JavaScript-based
platform for the operation of network applications, is used
for the realization of the web server (client server) offering a
REST (Representational State Transfer) API.

The third and central component of the tool takes care of
the database permanent storage and provision of the collected
data. This component is realized in terms of a PostgreSQL
database. Due to the existence of many different database
concepts [5] it out of our current focus to make an extensive

1Java Agent: https://docs.oracle.com/javase/8/docs/api/java/lang/instrument/
package-summary.html

2ASM Java Bytecode Manipulation: http://asm.ow2.org
3Angular framework for Single page Applications: https://angular.io



database comparison to find the optimal method for storing
the information.

Both the monitoring-part and the client-part for the rep-
resentation of results come with a server component which
provides access to the database. These components are called
monitoring-server and client-server respectively. The task of
these two server components is to hide the database structure
away from the client and the application monitor.

III. GUI COVERAGE ANALYSIS

In order to analyze the GUI coverage while testing, we need
to define the coverage criteria and subsequently determine how
we can obtain the information to measure that metric.

The coverage analysis is carried out during the execution
of the GUI tests, so that the degree of completeness of
these tests can be determined. Consequently, the goal is to
determine the coverage of the all GUI components, which
are actively used during the tests. Like the well-known code
coverage criteria, which calculates the coverage of the program
constructs (i.e. statements, branches, paths), the GUI coverage
criteria determines the covered graphical components of an
application, the so-called widgets (i.e. buttons, labels, text
fields, scroll-bars, menus).

The GUI of an application usually consists of many com-
ponents (widgets), which can also be nested. This hierarchical
structuring is referred to here and hereafter as a widget tree.
The root node of such a tree is, in many cases, the application
window itself, whereas the leaf nodes often consist of widgets
which do not allow further child elements. The most frequently
used leaf components are buttons, labels or input fields.

The structure of the widget tree is kept as simple as possible
in order to be able to easily determine not only the entire
covering, but also the coverage for each sub-tree. Each sub-
tree forms a specific area of application.

We create the widget structure dynamically at the SUT level
by logging and analyzing the application’s behavior during
the program run-time. We obtain the necessary information
through the adaptation of the SUT at byte-code level, this
avoids changing the source code and eliminates the need
for new compilation. In language environments such as the
Java Runtime Environment (JRE), byte-code adaptation is
relatively simple and already provided. The JRE supports the
implementation of custom class-loaders making it possible to
directly influence the byte-code of each Java class, even before
it is loaded into the JVM [6]. Profiling instructions supplement
Java classes to evaluate the program behavior later.

Dynamic widgets of an application can be created or dis-
carded at any time. Consequently, the structure of the widget
tree keeps changing and needs to be updated continuously.
Continuous logging provides an accurate image of the widget
structure at all times. The overhead generated by the logging
is kept as small as possible in the program, since logging only
takes place exactly when changes occur in the widget structure.

Maintaining a dynamic widget tree, there will be similar
widgets which have been instanced different times. These
should appear in the tree only once, in order to be able to

Fig. 1. Example of sunburst diagram representing Test Coverage

correctly determine the cover space during coverage analysis.
For the allocation of the same widgets, a clear identifiability is
an important prerequisite for the calculation of a meaningful
result in the coverage analysis. We use a combination of
different widget features for the correct determination of the
equality [7], [8]. We use class name, call stack, attributes, and
sub widgets in our approach.

In general, only those GUI widgets, which have been
instanced at least once during program execution, can be
recognized in this method. To reach as many as possible, we
have the analysis tool actively clicking through the GUI, in
order to be able to instantiate all displayable widgets and to
build up a complete widget tree [9].

A coloured widget tree can be used to represent the results,
starting with the root node, and navigate down to individual
leaf nodes. We call this a covering tree with colouring ac-
cording to whether a widget was covered or not during the
tests. Such a tree would take up a lot of space and make
a cumbersome representation for investigation. Instead, we
use a sunburst diagram (see Figure 1 for an example). The
centre point marks the root node in this representation, and
the outer regions characterize the leaves of the tree structure.
Through the colour marking of the segments, this diagram can
be enriched with further information. The advantage of this
representation is that the complete coverage can be estimated
at a glance. Partial trees with a low or particularly high
covering rate can be identified quickly. A disadvantage of this
representation is, however, that the large number of leaf nodes,
depending on the depth of the tree, only fill a relatively small
part of the representation and thus can lead to a deceptive
assessment of an almost completely dark coloured diagram.

A second way to represent results of the coverage analysis
are overlays on the application (see Figure 2 for an example).
It allows a direct visual link between the GUI and the results
of the coverage analysis and is best combined with the manual
creation of Capture & Replay tests.



Fig. 2. Representing Coverage as GUI Overlay

IV. GUI PERFORMANCE ANALYSIS

The GUI performance analysis aims to significantly expand
the existing performance tests. As with the GUI Coverage
analysis, these performance tests are also intended to refer
to the widgets of the program interface. The basic idea is to
link the performance tests with the functional GUI tests. In
this interplay, each user event on the GUI triggered by the
GUI test is simultaneously a performance test, for example
by determining the run times of the methods executed by the
event. With respect to the run times, particularly noticeable
measured values (long running times) can be indicated in the
performance evaluation.

The resource management of the individual applications is
performed by the operating system in most modern system
architectures. The administration and execution of the appli-
cation stubs is controlled by the operating system so that
the resource consumption can also be determined separately
for each of these threads. These operating system run-time
information provided by the operating system can also be used
for the GUI performance analysis. In such a concept, the goal
is first to synchronize the data from the monitoring of the
program inputs with the run-time information of the operating
system for resource consumption. Perhaps the only and most
important characteristic of synchronization is time.

On the application level, it is possible to perform the
performance measurements on the basis of the handler method
performed by the event. These handler methods are here and
in the following also to be referred to as event listeners. On
the basis thereof, e.g. the method run time of the treatment
routine can easily be determined.

For performance analysis, it is important that the measured
values are displayed in a suitable form. This presentation
is intended to separate the interesting ones from the less
interesting results of the measurements, or to give an overall
impression of the application performance. Such measured
values, which exceed a certain defined limit value, are regarded
as interesting (Figure 3).

Component

Button (Cancel) ← Composite ← Dialog (Save)

Button (Save) ← Composite ← Dialog (Save)

Label (Filename) ← Composite ← Dialog (Save)

Button (Generate) ← Composite ← Dialog (Test Generator)

Text (...) ← Group ← Composite ← Dialog (Test Generator)

...

Latency

10s

5s

1s

511ms

392ms

...

Event

selection

selection

mouse.up

selection

key.down

...

Events

s

Fig. 3. Results of Performance Analysis

V. EVALUATION

Since the monitoring of the application behavior is com-
pulsory performed on the same system and, in the case of
implementation as a Java agent, even in the same application
code, effects on the program behavior are unavoidable. The
ultimate goal in monitoring must therefore be to minimize
this influence, but in no case to change the program logic.

The application for evaluation is TESTONA (http://www.
testona.net/), the graphical editor [10] for the classification
tree method [11], a black box test design technique.

The existing test suite of TESTONA has a meaningful
amount of 370 test cases [12]. Since not all tests of this test
suite can be considered stable, the average number of failed
tests is determined by the repeated execution of all tests. In
addition to the number of failed tests, the run-time of the entire
test execution is also logged. This process is then repeated with
an activated monitoring.

Experiments with the 10-times repetitive test executions,
each with monitoring on and off, show that the number of
failed tests, as well as the run-time of the test execution,
almost doubled with activated monitoring. While the doubling
of the run-time can be directly attributed to the monitoring, the
doubling of the error rate must be considered more critically.
What is striking here is the much wider spread of the number
of failed tests compared to the test without active monitoring.
This indicates that the increased number of errors can be
attributed to the less robust test creation. It is striking that
the selection of the failed tests during test execution is very
similar to the monitoring, because often the same tests fail. In
the test execution with active monitoring, however, the lists of
the failed tests differ significantly more. In conclusion, it is
assumed that the monitoring process has a strong influence
on the program run-time, but not the program logic. The
higher number of failed tests can be justified by the extended
execution time and the lower robustness of the tests.

In addition to the functional test assurance of the coverage
analysis, the test coverage of the Capture & Replay tests was



analyzed. Figure 1 shows the graphical representation of the
event coverage. The calculated test coverage is 8%.

When looking closely at the coverage tree, it is noticeable
that many identical widgets are listed several times in the tree.
The reason for this is the inadequate correct identification
of the same widgets. We compared the characteristics of
individual GUI widgets and found the very same error pattern
in most samples: The cause of the error is the call stack
(included in the comparison of widgets) differs in function
calls, probably caused by the use of Java reflection.

For the verification of the performance analysis, a program
component is selected in TESTONA, which generates a sig-
nificantly increased GUI latency when it is used. During the
test execution this GUI latency is to be provoked as the only
large latency. In the expected test result this latency should be
clearly visible in the performance representation in the client.

From the test result it can be seen that the largest GUI
latency is caused by the selection of the corresponding menu
entry. The determined 64 seconds indicate that the program
interface is not accessible within this time span. The result thus
corresponds to the expected result from the test specification.

The evaluation showed that, as expected, the monitoring
process negatively impacts the program running time, but does
not have a demonstrable effect on the program logic. On the
basis of TESTONA the functionality of the monitoring and
the results presentation was checked. The integration of the
monitoring into the application was possible.

When evaluating the performance analysis, a long GUI
latency was provoked as described above. The subsequent
application of both test specifications confirmed the viability
of the analytical procedures.

VI. CONCLUSION

The monitoring tool currently supports only the logging of
widgets from the SWT or JFace framework. If monitoring is
also to be provided for other Java-specific GUI frameworks,
this functionality can be complemented by the monitoring
tool. In this case, it is only required to specify the methods
for the necessary code injection. However, it is necessary to
create a separate monitoring tool to support monitoring of non-
Java applications. Depending on the target environment, this
monitoring tool can be similar to the implementation of the
prototype: Functions for logging the status information can be
injected directly into the application code or else the external
interfaces of the runtime environment.

The reliable identification of GUI widgets is both essential
and difficult to implement, not only in the GUI analysis
methods presented here, also automated testing tools need to
solve this problem [13].

For the Coverage Analysis, the prototype implemented
in this work provides the coverage rates for simple event
coverage. However, the coverage criterion can also include
event chains in the analysis [3]. This would make it possible
for the events to be viewed in a context. In such a context,
it makes a difference, for example, which export format was
selected before clicking the Save button. The monitoring in
the current implementation has already recorded all events

and their occurrences, so the executed event transitions can
already be gathered relatively easily. However, to calculate
the coverage, we need to know the size of the entire space,
i.e. the set of actually possible event chains.

In addition to GUI latencies, a performance analysis of the
background processes can also provide useful information for
the quality assurance of the software. In particular, splitting
the calculations to multiple threads and using thread pools
makes this capture more difficult. It is therefore recommended
to mark the corresponding threads activated by a GUI event
recursively in order to enable allocation of the resource
consumption. Future work will take up this idea and make
further suggestions on how the resource consumption of an
application can be mapped to the GUI events.

While the performance analysis focuses primarily on deter-
mining the latencies, other performance features are also of
interest. In particular, the memory consumption. However, in
contrast to the run-time analysis, the use of memory resources
can be much more difficult, especially if these values are to
be mapped to the individual GUI events.

Other future work consists of integrating the profiling and
performance analysis with automates traversal based GUI test
tools like TESTAR [14], so we can study the power of random
or search-based testing. Additionally, the representation of the
results in the client is so far only very rudimentary and can
be improved or expanded in many places.

REFERENCES

[1] D. Jackson and M. Rinard, “Software analysis: A roadmap,” in Confer-
ence on the Future of Software Engineering. ACM, 2000, pp. 133–145.

[2] X. Wang, Z. Guo, X. Liu, Z. Xu, H. Lin, X. Wang, and Z. Zhang, “Hang
analysis: fighting responsiveness bugs,” in ACM SIGOPS Operating
Systems Review, vol. 42, no. 4. ACM, 2008, pp. 177–190.

[3] A. M. Memon, M. L. Soffa, and M. E. Pollack, “Coverage criteria for
gui testing,” ACM SIGSOFT Software Engineering Notes, vol. 26, no. 5,
pp. 256–267, 2001.

[4] JSON. Json. [Online]. Available: http://www.json.org
[5] D. Kroenke and D. J. Auer, Database concepts. Prentice Hall, 2010.
[6] C. Mcmanis. (1996) The basics of java class loaders. [On-

line]. Available: http://www.javaworld.com/article/2077260/learn-java/
learn-java-the-basics-of-java-class-loaders.html

[7] K. Li and M. Wu, Effective GUI testing automation: Developing an
automated GUI testing tool. John Wiley & Sons, 2006.

[8] O. Stadie and P. M. Kruse, “Closing gaps between capture and replay:
Model-based gui testing,” in 1st INTUITEST Workshop, 2015.

[9] A. M. Memon, I. Banerjee, and A. Nagarajan, “Gui ripping: Reverse
engineering of graphical user interfaces for testing.” in WCRE, vol. 3,
2003, pp. 260–269.

[10] P. M. Kruse and M. Luniak, “Automated test case generation using
classification trees,” Software Quality Professional, vol. 13, no. 1, 2010.

[11] M. Grochtmann and K. Grimm, “Classification trees for partition test-
ing,” Software Testing, Verification and Reliability, vol. 3, no. 2, pp.
63–82, 1993.

[12] A. Kresse and P. M. Kruse, “Development and maintenance efforts
testing graphical user interfaces: a comparison,” in 7th International
Workshop on Automating Test Case Design, Selection, and Evaluation.
ACM, 2016, pp. 52–58.

[13] S. Bauersfeld, T. E. J. Vos, N. Condori-Fernandez, A. Bagnato, and
E. Brosse, “Evaluating the testar tool in an industrial case study,” in
Proc. of the 8th ESEM. ACM, 2014, pp. 1–9.

[14] T. E. J. Vos, P. M. Kruse, N. Condori-Fernández, S. Bauersfeld, and
J. Wegener, “Testar: Tool support for test automation at the user interface
level,” IJISMD, vol. 6, no. 3, pp. 46–83, 2015.


