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Chapter 1

Introduction

Over the past twenty years, distributed computing has rapidly emerged as a separate
area of computer science research in response to the difficulties experienced during the
design of distributed systems. These difficulties stem from the fact that distributed
systems are conceptually far more complex than a single computing unit. Whereas in
the latter only one action can occur at the same time, in a distributed system – and
its underlying distributed algorithms – the number of possibilities of what can happen
when and where tends to be enormous due to the presence of non-determinism and
parallelism. This makes it hard to design correct and reliable distributed systems.

Formal methods, the term by which the variety of mathematical modelling tech-
niques that are applicable to computer system design and verification is meant, are
advocated as a way of increasing the reliability of computer based systems. Many
[BS92, BH95b, BS93b, BBL93, BH95a, BS93a, Bow93, BJ93, CGR93, CG92, GCR94,
Hal90, Kem90, Nic91, RvH93, Rus94, WW93] believe that the use of formal methods
currently offers the only intellectually defensible method for handling the software
crisis that increasingly affects the world of embedded and distributed systems. For-
mal methods can be applied at three levels, providing different levels of reliability of
the system developed.

At a basic level, formal methods may be used for specification of the system to
be designed. The use of formal specification techniques can be of benefit in most
cases. Using a formal specification language instead of natural language has the
advantage that specifications are more concise and less ambiguous, which makes it
easier to reason about them and helps to gain greater insight into and understanding
of the problem solved. Furthermore, formal specifications serve as a valuable piece of
documentation, which is essential for software maintenance purposes.

The next level of use is formal development, which involves formally specifying
the program, proving that certain properties are satisfied, proving that undesirable
properties are absent, and finally applying a refinement and decomposition calculus
to the specification such that it may gradually be transformed into an efficient and
concrete representation of the program. The proofs involved are pencil-and-paper
proofs, which can be formal or informal, depending on the level of assurance that is
required.

1



2 Chapter 1 Introduction

At the last, and most rigorous, level, the whole process of proof is mechanised.
Hand proofs or design inevitably lead to human error occurring for all and even the
simplest systems. Verifying the design process with a mechanical theorem prover re-
duces the possibility of errors. Although some argue that this can never eliminate
errors completely since the program that does the verification itself may be incorrect,
experience shows that theorem provers are very reliable, and definitely much more
reliable than people. In addition to reducing errors, the use of theorem provers at-
tributes to the understanding of the problem that is being solved, because during the
verification process one is irrevocably confronted with every aspect of the program
under construction.

Although formal methods and mechanical verification are becoming more and
more accepted as the only intellectually defensible way in which the quality of both
software and hardware can be improved, it should be remembered that they are not
some universal panacea. In this context we refer to the following quote from C.A.R.
Hoare:

Of course, there is no fool-proof methodology or magic formula that will
ensure a good, efficient, or even feasible design. For that, the designer
needs experience, insight, flair, judgement, invention. Formal methods
can only stimulate, guide, and discipline our human inspiration, clarify
design alternatives, assist in exploring their consequences, formalise and
communicate design decisions, and help to ensure that they are correctly
carried out.

1.1 Objectives of this thesis

In this thesis we apply the last, and most rigorous, level of formal methods to the
design and verification of distributed algorithms. One of the objectives of our re-
search is to build re-usable libraries for a theorem prover which state the correctness
and computational power of basic building blocks of distributed applications, such
that these libraries can be used when developing large distributed applications which
are composed of these basic blocks. Pursuing this goal we encounter two complex
and time-consuming activities: using theorem provers, and studying and verifying
distributed algorithms. Therefore, another aim of our research is to investigate which
separate activities are most complex and time-consuming, and what can be done to
change this.

Several aspects contribute to the time needed to mechanically verify the correct-
ness of a distributed algorithm. First the tool itself, e.g. its efficiency, the amount of
decision procedures that enable automatic verification, the steepness of its learning-
curve, and its user-interfaces. Second, the complexity of the distributed algorithm
and its correctness proof. Evidently, complexity that is inherent to some algorithm
cannot be reduced, and a certain amount of time has to be spent in order to verify
its correctness. However, unnecessary complexity can be introduced by inadequate
descriptions or representations of algorithms, unstructured and badly motivated cor-
rectness proofs and strategies, and insufficient analysis oriented towards the discovery
of classifications of similar algorithms and re-usable theories. In this thesis we show
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that enhanced representations of (distributed) algorithms significantly influence the
ease of reasoning about them. More specifically, we show that better representations
of algorithms can reduce the time and effort needed to understand the functionality,
applicability and properties of the algorithm. Moreover, we show that better represen-
tations can increase the ability to see similarities and differences between algorithms
and learn how to invent and encapsulate new algorithms. As a result we finally obtain
classifications of algorithms. Subsequently, we demonstrate how the proof effort and
complexity of correctness proofs is reduced by constructing efficient proof strategies
based on an analysis of the similarities of algorithms within a specific classification.

1.2 What we use

For the formal and mechanical verification of distributed algorithms in this thesis
we use the HOL theorem proving environment [GM93], the UNITY programming
theory [CM89], and an embedding of the latter in the former that is an extension of
Prasetya’s embedding [Pra95].

The HOL system [GM93] is an interactive mechanical proof assistant for con-
ducting proofs in higher order logic, and provides an environment for defining other
formal systems and proving statements about them. HOL does not attempt to prove
theorems automatically, and thus is better described as a proof assistant, recording
proof efforts along the way, and maintaining the security of the system at each point,
but remaining essentially passive and directed by the user. HOL is, however, fully
programmable, and enables the user to construct programs that automate whatever
theorem-proving strategy he or she desires.

Chandy and Misra put forth the UNITY programming theory [CM89] as a vehicle
for the study, design and verification of distributed computations. UNITY’s success
as a research tool is a direct result of its minimalistic philosophy, which enables re-
searchers to focus attention on the essence of the problem rather than implementation
details concerning programming languages and architectures. The UNITY theory con-
sists of a programming language and an associated logic. Program design in UNITY
commences with (informal) specifications of what the program is expected to accom-
plish, and then proposes an operational solution (i.e. a UNITY program) to meet
those goals. The resulting UNITY program is an abstraction of the actual implemen-
tation: it describes what must be done, and not when, where and how. The process of
program verification entails formalising a program specification in the UNITY logic,
and decomposing and refining this specification until it is detailed enough to be di-
rectly proved from the program text.

Prasetya [Pra95] made an embedding of the programming logic UNITY in HOL,
by extending the latter with all definitions required by the logic, and making all
basic theorems of the logic available by proving them. The gain from this is that the
formal design of programs can now be assisted by a mechanical verification with the
theorem prover, resulting in a significant increase of the trustworthiness of the design.
Moreover, he defined two extensions of the programming logic UNITY which are also
embedded in HOL. The first extension of the programming logic UNITY concerns
compositionality properties. A problem of UNITY is that progress properties are not
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compositional with respect to parallel composition. That is, we cannot in general
decompose a progress specification of a program into the specifications of its parallel
components. Therefore one is unable to develop a component program in isolation,
which is awkward. The extension presented is however compositional. The second
extension regards self-stabilisation and convergence of programs. Roughly speaking,
a self-stabilising program is a program that is capable of recovering from arbitrary
transient failures. Obviously such a property is very useful, although the requirement
to allow arbitrary failures may be too strong. The more general notion of convergence,
which allows a program to recover only from certain failures, is used to express a
more restricted form of self-stabilisation. Since self-stabilisation and convergence are
considered to be essential for programs in safety-critical environments, e.g. distributed
environments, this second extension is significant for our purposes. Moreover, an
induction principle is formulated for convergence which is stronger than the one for
UNITY’s reach-to operator. As a consequence, a powerful technique for proving
convergence has become available.

1.3 How to read this thesis

This thesis consists of two parts. The first part consists of Chapter 2 through 7, and
contains the machinery that is needed for the applications in the second part.

Chapter 2: The HOL theorem proving environment

As implied by the title, this chapter describes the HOL theorem proving envi-
ronment [GM93]. It is not meant to give an introduction to the system, but
merely to explain those aspects of HOL that are needed in the rest of the the-
sis. The concepts treated are: terms and types in the HOL logic; Hilbert’s ε
choice operator; antiquotation and type abbreviations in HOL; how HOL can be
extended by definitions, axioms, and the derivation of theorems; two different
approaches to embed another (formal) system in HOL; and two ways to define
partial functions in HOL.

Chapter 3: Basic programming theory

This chapter describes basic programming theory underlying the work in the
rest of this thesis. The concepts treated are: program variables and their types,
states, expressions, predicates, and actions. Although the mathematical theory
in this chapter is not new, the combination of the choices made while embedding
various basic programming concepts in higher order logic, as well as the nota-
tion, differ slightly from other work [Pra95, APP93, Gor89, BW90, WHLL92,
Wri94, L̊an94, Wri91, Age91]. Therefore, to avoid confusion this chapter pre-
cisely defines these concepts and their notation.

Chapter 4: UNITY

This chapter gives an overview of the UNITY theory and Prasetya’s extensions.
Again, only those concepts that are needed in the rest of the thesis are presented:
the execution, syntax, and well-formedness of UNITY programs; UNITY proof
logic, including Prasetya’s extensions; and superposition refinement of UNITY
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programs. This chapter presents a myriad of laws that are used during the
decomposing and refining of UNITY specifications.

Chapter 5: Embedding HOL in UNITY

This chapter, describes the theories that are built on top of Prasetya’s embed-
ding in order to cope with the slightly different program-theoretic foundations
presented in Chapter 3.

Chapter 6: A methodology and a case study

This chapter describes an extension of the UNITY [CM89] methodology for
designing and/or mechanically verifying distributed algorithms, which is used
in subsequent chapters. To illustrate the use of this methodology, a case study to
design and verify a converging distributed sorting algorithm is presented. One
aim of this case study is to highlight the different steps of the methodology, and
for that reason, the problem tackled is relatively simple compared to real-life
applications and the algorithms verified in later chapters. Another objective of
this case study is to be able to reflect on the methodology and the time spent
in each separate step (Section 6.3).

Chapter 7: Program refinement in UNITY

This chapter presents a new framework of program refinement, which is based
on a refinement relation between UNITY programs. The main objective of
introducing this new relation is to reduce the complexity of correctness proofs
for existing classes of related distributed algorithms. Moreover, it is shown
that this relation is also suitable for the stepwise development of programs, and
incorporates most of the program transformations found in existing work on
refinements

Chapter 8: The proof of the program is in the representation

This chapter argues that the enhanced representations of distributed algorithms
can significantly influence the ease of reasoning about them. First, it is described
what we consider to be a good representation of an algorithm, and how such
representations can be obtained. Subsequently, better representations of two
specific algorithms are constructed, and it is shown that these reduce the time
and effort needed to understand the algorithms’ functionality, applicability and
properties, increase the ability to see similarities and differences between other
algorithms and learn how encapsulate new algorithms, and as a result obtain
a class of algorithms that we call distributed hylomorphisms. Finally, it is
demonstrated how the proof effort and complexity of correctness proofs of these
distributed hylomorphisms can be reduced by identifying a refinement ordering
on them.

Chapter 9: Formally proving the correctness of distributed hylomorphisms

This chapter extensively describes the formal proofs of the correctness of dis-
tributed hylomorphisms. Although it is a tough chapter to read, we think we
have succeeded in presenting structured correctness proofs that are highly intu-
itive due to our incremental, demand-driven construction of the invariant. Since
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this chapter uses the refinement framework from Chapter 7, it also serves as an
illustration of the latter’s usage and effectiveness for reducing the complexity of
correctness proofs for existing classes of related distributed algorithms.

The organisation of these chapters is bottom-up, meaning that a concept defined in
chapter n is only used in a chapter m when m ≥ n. Reading these chapters in the
order presented may prevent the reader from swiftly arriving at the topics he or she is
interested in. Consequently, we have compiled an extensive index that should enable
the reader to start reading this thesis at any chapter (with the exception of 9), looking
up desired definitions in a demand-driven way. Moreover, below we indicate which
chapters one should read depending on the topics the reader is interested in.

• For a reader interested in the underlying embedding of UNITY, we advise:
2 - 3 - 4 - 5 - Appendix B - Appendix D

• For a reader interested in how to manually add recursive data types to HOL:
2 - 5 - Appendix B - Appendix D

• For a reader interested in the extension of the UNITY methodology used for
the design and mechanical verification of distributed algorithms, we advise:

4 - 6 - 8
• For a reader interested in refinement of UNITY programs, we advise:

3 - 4 - 7 - Appendix C
• For a reader interested in the representations of, and reasoning about distributed

algorithms, we advise:
(glance through the beginning of) 4 - 8

• For a reader interested in the formal verification of distributed algorithms:
3 - 4 - 7 - 8 - 9 - Appendix D

1.4 Using the results

Should one want to apply the results presented in this thesis, the safe way to do it
is not to consider them as presented in the thesis, which after all was hand-typed
and hence is likely to contain errors. Instead, one should take the results as they are
reported by HOL, and contained in the libraries.

1.5 Presenting theorems

Almost all theorems in this thesis are computer-checked. Although for such theorems
there is basically little need to present their proofs, some proofs will be presented
with a view to:

• enabling the reader to validate it,
• showing how easily a theorem follows from some facts,
• illustrating a style of verification,
• giving some insight in proving a closely related problem,
• exposing the actual nature of a theorem.
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Like [Pra95], when presenting computer-checked results (i.e. theorems and definitions)
these will be marked by the names they are identified with in the HOL theories that
we constructed. For example:

Theorem 1.5.1 Pink Panther Pink Panther thm

Fu = Fu ◦ Fu
J

The number (1.5.1) and the name Pink Panther are how we refer to such a theo-
rem. The name Pink Panther thm is how the theorem is called in HOL. Implicitly,
this means that the theorem is mechanically verified. When referring to a theorem,
or definition we – for the reader’s convenience – include the page number in which
the referred item can be found. The page number is printed as a subscript like in:
Theorem 1.5.17 or Theorem Pink Panther7.

In this thesis we employ two formats for presenting theorems, which mean exactly
the same:

p ∧ q ⇒ r or

p
q
r

These two formats are used interchangeably, and merely practical reasons like read-
ability and lay-out were paramount to the decision whether to use one or the other.

1.6 Notational conventions

Some notational conventions used in this thesis can be found in Appendix A, others
are introduced throughout the text prior to the moment of usage. For the reader’s
convenience, we have compiled an extensive index in which every non-standard symbol
that is used in this thesis can be found together with the number of the page on which
this symbol is explained. Moreover, the index contains entries “notational conventions
and overloading” and “overloading traditional notation” referring to all pages on which
notation is introduced.
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Chapter 2

The HOL theorem proving
environment

The HOL system [GM93] is a mechanical proof assistant for conducting proofs in
Higher Order Logic. It is free, comes with extensive documentation, libraries, an
interactive help system, a myriad of web-sites providing information and a dynamic
search engine for HOL information1, and a mailing list2. HOL is based on the LCF
approach [Pau87] to interactive theorem proving developed by Robin Milner in the
early 1970s, and is an implementation of a version of Church’s simple theory of types, a
formalism dating back more than 50 years. Basically, higher order logic is a version of
predicate calculus which allows for quantification over predicate and function symbols
of any order.

HOL is built on top of the strict functional programming language SML. The
HOL system defines SML types for the various logical entities (e.g. terms, types,
theorems, theories). The SML type for theorems is an abstract data-type thm, and as
a consequence, an object of type thm can only be constructed through a limited set
of operations. There are certain predefined SML identifiers which are given values
of type thm when the system is built. These values correspond to the five axioms
underlying higher order logic. Moreover, there are several predefined SML functions
that take theorems as arguments and return theorems as results. These functions cor-
respond to the eight primitive inference rules underlying higher order logic. The SML
type checker ensures that values of type thm can only be constructed through these
predefined functions. Therefore, every value of type thm (i.e. a theorem) must be
either one of the five axioms or have been obtained by applications of the predefined
functions representing the eight primitive inference rules. In addition to primitive
inference rules, there are many derived inference rules available in HOL. These are
SML functions consisting of compositions of the eight primitive inference rules. Con-
sequently, although the SML code for derived rules can be arbitrarily complex, they
will never return a theorem that does not follow by valid logical inference.

1http://lal.cs.byu.edu/lal/hol-documentation.html
2info-hol@lal.cs.byu.edu

9
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standard notation HOL notation

Denoting types x ∈ A or x : A --‘x:A‘--
Proposition logic ¬p, true, false --‘~p‘--, --‘T‘--, --‘F‘--

p ∧ q, p ∨ q --‘p /\ q‘--, --‘p \/ q‘--
p ⇒ q --‘p ==> q‘--

Universal (∀x, y :: P ) --‘(!x y. P)‘--
quantification (∀x : P.x : Q) --‘(!y::P. Q)‘--
Existential (∃x, y :: P ) --‘(?x y. P)‘--
quantification (∃x : P.x : Q) --‘(?x::P. Q)‘--
Function application f.x --‘f x‘--
λ abstraction (λx. E) --‘(\x. E)‘--
Sections (∧) p q, (+) x y $/\ p q, $+ x y
Conditional if b then E1 else E2 --‘b => E1 | E2‘--
expression (or b → E1 | E2)
Sets {a, b}, {f.x | P.x} --‘{a,b}‘--, --‘{f x | P x}‘--
Set operators x ∈ V , U ⊆ V --‘x IN V‘--, --‘U SUBSET V‘--

U ∪ V , U ∩ V --‘U UNION V‘--, --‘U INTER V‘--

Figure 2.1: The HOL Notation.
J

HOL is an interactive proof assistant: one types a formula and proves it step by
step using any primitive strategy provided by HOL. When the proof is completed,
the code constructing a theorem can be collected and stored in a file, to be given to
others for the purpose of re-generating the proved fact, or simply for documentation
purposes in case modifications are required.

HOL is not an automatic theorem prover. Unlike for example the Boyer-Moore
theorem prover [BM88], HOL does not attempt to automatically prove theorems, but
rather provides an environment and supporting tool to enable users to prove theorems.
However, since HOL is programmable, the user is free to construct programs that
automate whatever proof-strategy he or she desires.

This chapter describes only those aspects of HOL that are needed in the rest of
this thesis. Section 2.1 describes HOL terms and types. Sections 2.2 and 2.3 explain
Hilbert’s ε-operator and antiquotation respectively. Section 2.4 outlines how HOL
can be extended. Sections 2.5 and 2.6 respectively describe how to add definitions
and prove theorems in HOL. Section 2.7 explains what an embedding is and briefly
describes the two approaches that can be taken when constructing one. Section 2.8,
finally, describes two mechanisms for defining partial functions within HOL.

2.1 HOL terms and types

All HOL formulae, also called logical terms, are represented in SML by a type called
term. Figure 2.1 shows examples of how the standard notation is translated to the
HOL notation. As the reader can see, the HOL notation is as close an ASCII nota-
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tion can be to the standard notation. Anything in between --‘...‘-- is parsed as a
logical term. Terms of the HOL logic are quite similar to SML expressions, which can
cause confusion since these terms have different types: logical types and SML types
(called object language types and meta-language types respectively). The object lan-
guage types of HOL terms are represented by meta-language type hol type, and are
denoted by expressions of the form ==‘:...‘==. There is a built-in function type of,
which has SML type term->hol type and returns the logical type (i.e object language
type) of a HOL term. An example taken from [GM93] may elucidate these matters.
Consider for example the logical term (--‘(1,2)‘--)

• It is a HOL term with object language type (i.e. logical type) (==‘:num#num‘==).
• It is an SML expression with meta-language type term
• Evaluating type of --‘(1,2)‘-- results in (==‘:num#num‘==).
• This object language type (==‘:num#num‘==) has SML type hol type.
• In contrast consider the SML expression ((--‘1‘--), (--‘2‘--)) which has

SML type term#term.

There are three classes of object language types in HOL:

• type constants are identifiers that name sets of values. Examples are bool, num,
real, and string which denote the set of booleans, the set of natural numbers,
the set of reals, and the set of strings respectively.

• type variables to denote “any type”. Names denoting type-variables must always
be preceded by a ’ like in ==‘:’a‘== or ==‘:’b‘==.

• compound types are object language types that are built from other types using
a type operator. Examples of type operators in HOL are: product (#), sum (+),
function (->), lists (list), and sets (set).

In HOL one can define new type operators using the type definition package [Mel89,
GM93]. The main SML function in this package is define type, with which any
concrete recursive data type can be defined in the HOL system. A concrete recursive
data type is one of the form:

op = C1 t11 . . . tk1
1

| . . .
| . . .
| Cm tm1 . . . tkm

1

(2.1.1)

where each Ci is a constructor function, and where each tji :
• is either a type expression already defined as a type (this type expression must

not include the type operator op),
• or is the name op itself.

Recursive types where some of the tji ’s are type expressions that do include the type
operator op, are not concrete; for these types, the type definition package does not
work, and the user has to define such a type manually (we shall see an example of this
in Chapter 5). An example of a concrete recursive type that can be defined in HOL
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using the type definition package is the following type representing labelled binary
trees:

binTree = LEAF ’a
| NODE ’a binTree binTree

It can be defined in HOL using the define type function:

val binTree_Axiom
=
define_type
{name = "binTree_Axiom",
fixities = [Prefix, Prefix],
type_spec = ‘binTree = LEAF of ’a

| NODE of ’a => binTree => binTree‘};

The name field contains the name under which the abstract characterisation theorem
(which for these concrete recursive data types will have the form of a “primitive
recursion theorem”) of the new type will be stored. The fixities field indicates
the fixities of the respective constructors (i.e. in the example, the fixities of both
constructors LEAF and NODE are specified to be prefix). The type spec field is a
user-supplied specification of the concrete recursive type that is to be defined.

Having defined the new type operator binTree, we can define objects to be of
type binTree. An example HOL-session illustrates this.

- (--‘x:(num)binTree‘--);
val it = (--‘x‘--) : term

- (==‘:(num)binTree‘==);
val it = (==‘:num binTree‘==) : hol_type

J

2.2 Hilbert’s ε-operator

Hilbert’s ε-operator is a primitive constant of higher order logic[Mel89, GM93]. In-
formally, its syntax and semantics are as follows. If P [x] is a boolean term involving
a variable x of type α, then (εx. P [x]) denotes some value, say v, of type α such that
P [v] is true. If there is no such value (i.e. ∀v ∈ α : ¬P [v]) then (εx. P [x]) denotes
some fixed but arbitrary chosen value of α3. For example:

• εn. 4 < n ∧ n < 6 denotes the value 5
• εn. (∃m :: n = 2×m) denotes an unspecified even natural number
• εn. n < n denotes an arbitrary natural number

The formalisation of the ε-operator in HOL is by the following theorem:

3A consequence, in HOL, types must be non-empty.



2.3 Antiquotation 13

Theorem 2.2.1 SELECT AX

∀P :: (∃x :: P.x) ⇒ (P.(εx. P.x))
J

Consequently, ε can be used to obtain a logical term which provably denotes a value
with a given property P from a theorem merely stating the existence of such a value.

2.3 Antiquotation

Within a quotation (i.e. --‘...‘--), expressions of the form (^t) (where t is an SML
expression of meta-language type term) are called antiquotations. An antiquotation
(^t) evaluates to the SML value of the expression t. As an exemplification, consider
the following small HOL-session:

- val x = (--‘y /\ z‘--);
val x = (--‘y /\ z‘--) : term

- val p = (--‘^x \/ k‘--);
val p = (--‘y /\ z \/ k‘--) : term

-
J

Type abbreviations can be made using antiquotation and the SML function ty antiq
of type hol type->term. One gives an SML name to the term representing the
desired type, and then uses this name via antiquotation. The following HOL-session
illustrates this:

- val numpair = ty_antiq (==‘:num # num‘==);
val numpair = (--‘(ty_antiq((==‘:num # num‘==)))‘--) : term

- val p = (--‘x:^numpair‘--);
val p = (--‘x‘--) : term

- type_of p;
val it = (==‘:num # num‘==) : hol_type

-
J

2.4 Extending HOL

HOL provides the user with a logic that can easily be extended by the definition of
new constants, functions, relations and types. These extensions are organised into
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units called theories. Theories are structured hierarchically to represent sequences of
extensions. More specifically, subsequent pieces of work can be built on (i.e. extend)
the definitions and theorems of an existing theory T by making T a parent theory
of new theories, thus creating a theory hierarchy. A HOL theory is similar to a
traditional theory of logic in that it contains definitions of new types and constants,
and theorems which follow from the definitions. It differs from a traditional theory
in that a traditional theory is considered to contain the infinite set of all possible
theorems that could be proved from the definitions, whereas a HOL theory contains
only the subset that have been actually proved (i.e. are objects of type thm).

Besides adding definitions, HOL also provides the ability to assert new axioms in
the HOL logic. Since new axioms can introduce inconsistencies, one has to exercise
caution when adding them. Asserting new axioms can be done at the user’s respon-
sibility when he or she is convinced that the axiom can be proved as a theorem and
able to give sufficient justification to sustain this.

Extending HOL by using only definitions is called a definitional or conservative
extension, since the security of HOL is not compromised. Although it is also possible
to introduce silly definitions, these are nothing more than abbreviations, and hence
cannot introduce inconsistencies.

2.5 Definitions in HOL

In HOL a definition is also a theorem, which states the meaning of the object that is
being defined. Because the HOL notation is quite close to the standard mathematical
notation, definition of new objects can, to some extent, be written in a natural way.
New definitions are added to HOL using the SML function new definition. As an
example, the following HOL-session defines a new constant F2R denoting an opera-
tor that converts a function into a relation. The first argument to new definition
specifies the name under which the definition (i.e. theorem) is saved in the theory
in which the definition is made (and, according to the notational conventions ex-
plained in Chapter 1, corresponds to the name in the upper right corner of Definition
A.2.3216).

- val F2R_DEF = new_definition
("F2R_DEF",
(--‘F2R (f:’a->’b) = (\x y. (y = f x))‘--));

val F2R_DEF = |- !f. F2R f = (\x y. y = f x) : thm

-
J

Recursive definitions can be added for those concrete recursive data types that have
been added to HOL using the type definition package. The SML function available
for this is called new recursive definition. For example, a recursive function on
labelled binary trees that computes the sum of all the (numeral) values that reside at
the nodes can be defined by adding the HOL constant sum binTree as follows:
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- val sum_binTree = new_recursive_definition
{name = "sum_binTree",
fixity = Prefix,
def = (--‘(sum_binTree (LEAF (x:num)) = x)

/\
(sum_binTree (NODE x t1 t2) = x + (sum_binTree t1) + (sum_binTree t2))‘--),
rec_axiom = binTree_Axiom};

val sum_binTree =
|- (!x. sum_binTree (LEAF x) = x) /\

(!t2 t1 x.
sum_binTree (NODE x t1 t2) = x + sum_binTree t1 + sum_binTree t2) : thm

J

The rec axiom field corresponds to the abstract characterisation theorem which was
returned by the specific call to define type used to define the concrete recursive data
type of labelled binary trees.

2.6 Proving theorems in HOL

Within the HOL system, conjectures one wants to prove are called goals. To prove
a goal one can start with known theorems, combine these to deduce new theorems,
and continue until the desired goal itself is obtained as a theorem. Alternatively,
one can start with the goal, work backwards by splitting it into simpler subgoals,
and continue until all obtained subgoals can be reduced to known theorems. These
methodologies are usually referred to as forward proof and backward proof respectively.
Both methodologies for proving new theorems can be visualised by a proof tree that
has the top-goal as its root, and the intermediate subgoals as its nodes. A forward
proof constructs a proof tree from bottom to top, and a backward proof constructs
it from top to bottom. A proof tree is generally defined to be closed if all leaves are
known theorems, and, hence, the top-goal is proved.

As already indicated, in HOL, new theorems can only be generated by applying
HOL inference rules to known theorems, i.e. axioms and previously proved facts;
basically this comprises forward proof in HOL.

HOL also supports backward proof using the notion of tactics invented in 1970 by
Robin Milner. In HOL a tactic is an SML function, the effect of which is to replace
a goal with a set of subgoals which if proved are sufficient to prove the original goal.
The effect of a tactic is essentially the inversion of an inference rule. Some examples
of pre-defined SML functions implementing tactics in HOL are:

MATCH ACCEPT TAC: thm -> tactic, which proves a goal if it is an instance of the
supplied theorem.

MATCH MP TAC: thm -> tactic, the effect of which corresponds to the inversion of the
Modus Ponens inference rule. For example, suppose we have the following theorem:
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LESS_TRANS |- !m n p. ((m < n) /\ (n < p)) ==> (m < p)
Suppose we want to prove the following goal for some x and y:

(--‘x < y‘--)
Applying MATCH MP TAC LESS TRANS then results in the following subgoal:

(--‘?n. (x < n) /\ (n < y)‘--)

REWRITE TAC: (thm)list -> tactic; REWRITE TAC[t1, . . . , tn] transforms a goal by
rewriting it with the given theorems t1, . . . , tn.

Tactics can be composed using tacticals. Examples of the most used tacticals in HOL
are THEN, ORELSE and REPEAT.

• THEN : tactic->tactic->tactic; if T1 and T2 are tactics, then T1 THEN T2
is a tactic, which first applies T1 and then applies T2 to all the subgoals that
were generated by T1.

• ORELSE: tactic->tactic->tactic; if T1 and T2 are tactics, then T1 ORELSE
T2 is a tactic, which first tries T1. If T1 fails then it tries T2.

• REPEAT: tactic->tactic; if T is a tactic, then REPEAT T is a tactic that re-
peatedly applies T until it fails.

HOL provides a facility, called the sub-goal package, to interactively construct a back-
ward proof. The package memorises the proof tree and the information needed to
achieve the top-goal from achievements of the subgoals. The tree can be displayed,
extended, and partly un-done. Whereas interactive forward proofs are also possible
in HOL simply by applying inference rules interactively, HOL provides no facility to
automatically record proof trees for forward proofs.

2.7 Embeddings

An extension of HOL (i.e. a theory hierarchy) that enables the mechanised reasoning
of another (formal) system (e.g. a programming logic, programming language, a
process algebra, a HDL) is what is called an embedding of the (formal) system in HOL.
There are two approaches to mechanise another (formal) system in HOL: shallow
embedding and a deep embedding.

A shallow embedding of some (formal) system, introduces new constants in the
HOL logic to represent each construct of the system and defines these constants as
functions that directly denote the construct’s semantics. For example, a shallow
embedding of the assign statement (x := e) of some programming language might be
defined as:

ASSIGN.x.e.s = λy. (y = x) =>(e.s) | (s.y)

where the constant ASSIGN is defined as a higher order function that takes the logical
representations of variable x and expression e as its first and second argument, and
a state s as its third argument. The state shall be some function from type ’var
to some type of values; and ASSIGN returns a new state in which x is bound to the
value of expression e evaluated in state s. The use of such constants for each language
construct makes parsing a text into the logic straightforward and properties of the
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text can then be proved. This approach, however, makes it difficult to express the
static semantics in the logic, and does not allow general properties about the language
itself to be proved. These limitations are overcome by the alternative approach to
mechanise a system in HOL, i.e. the deep embedding.

In a deep embedding, the abstract syntax of the language is defined as a type
in the HOL logic, and the semantics is defined as recursive functions over this type.
That is, instead of defining a construct as its semantic meanings, we define a construct
as simply a syntactic object and then separately define its semantics. For example,
continuing to the programming language, we shall add some data type to HOL (using
define type) to represent the various constructs (cmd) of the programming language:

val cmd = ...
| ASSIGN ’var Expr
| ...
.
| ...

The semantics are then defined using new recursive definition. The “deepness” of
this embedding is determined by the approach that is used to embed the expressions
(i.e. type Expr). In this respect we shall refer to a deeper embedding (i.e. when the
expressions are shallowly embedded) and a deepest embedding (when the expressions
are also deeply embedded).

2.8 Defining partial functions in HOL

Since in the HOL logic all functions are total, we need mechanisms to define partial
functions as total ones. The traditional HOL solution is to leave partial functions
unspecified for values not in the correct domain. For example, the function HD, that
returns the first element of a list, is a partial function that is only defined on non-
empty lists. In HOL it is defined as a total function HD : (’a)list → ’a that is
specified by:

HD(CONS h t) = h

Consequently, applying HD to an empty list of type (’a)list, will return a value of
type ’a denoted by HD []. Since the value HD [] is unspecified, nothing definite can be
proved about it, and consequently this value can represent “undefinedness” returned
by the partial function HD when applied to an element not in its domain.

An alternative solution is to deal with “undefinedness” explicitly, by introducing a
constant ⊥, of which it is known that for any given (non-empty) HOL type σ, ⊥ ∈ σ.
Then, a partial function f ∈ V → σ2 where V ⊂ σ1, is defined as the total function
f �V (∈ σ1→σ2)

(f �V ).x = f.x , if x ∈ V
= ⊥ , otherwise
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The total function f �V is called the projection or restriction of f to the set V . The
constant ⊥ can be seen as “undefinedness” returned by the partial function f when
applied to an element not in its domain. Below, the formal definition of projection is
given, together with some properties:

Definition 2.8.1 Projection Pj DEF

For all f ∈ σ1→σ2, V ⊆ σ1, and x ∈ σ1:

(x ∈ V ⇒ (f �V ).x = f.x) ∧ (x 6∈ V ⇒ (f �V ).x = ⊥)

Theorem 2.8.2 �Extension Pj EQ

(f �V = g �V ) = (∀x : x ∈ V : f.x = g.x)

Theorem 2.8.3 �Anti-monotonicity Pj EQ MONO

V ⊆ W ∧ (f �W = g �W ) ⇒ (f �V = g �V )

Theorem 2.8.4 �Extension by ∪ Pj EXTEND BY UNION

(f �(V ∪W ) = g �(V ∪W )) = (f �V = g �V ) ∧ (f �W = g �W )

Theorem 2.8.5 � composition Pj COMPO

(f �V �W = f �(V ∩W )
J

Note that both methods, eliminate the need to introduce special rules for dealing with
“undefinedness”, since it is regarded as being an ordinary value representing the set
of “uninteresting” but valid values.



The advanced reader who skips parts that appear to him too ele-
mentary may miss more than the less advanced reader who skips
parts that appear to him too complex.

– George Pólya [Pól71]

Chapter 3

Basic programming theory

T his chapter describes the basic programming theory underlying the work pre-
sented in the rest of this thesis. The concepts treated are states, program
variables and their types, expressions, predicates, and actions.

Although the mathematical theory in this chapter is not new, the combination of
the choices made while embedding various basic programming concepts in higher
order logic, as well as the notation, differ slightly from other work [Pra95, APP93,
Gor89, BW90, WHLL92, Wri94, L̊an94, Wri91, Age91]. Therefore, to avoid confusion
this chapter precisely defines these concepts and their notation. For instance, as in
[Pra95, APP93, Gor89, BW90] states are represented as functions from variables to
values, but unlike these works program variables can have different types. Moreover,
as in [BW90] but unlike [Pra95, APP93, Gor89] the embedding of actions is deep (i.e.
their syntax is defined as a type and their semantics is defined by a function over this
type).

3.1 Program states

The state of a program is an assignment of values from a universe of values to the
program’s variables. Generally, there are two methods to concretely1 represent the
state of a program.

The first method is used by von Wright et al [WHLL92, Wri94] in a HOL embed-
ding of The Refinement Calculus, by von Wright [Wri91] and L̊angbacka [L̊an94] in
their separate HOL embedding of TLA, and by Agerholm [Age91] in his formalisation
of the weakest pre-condition calculus of a small imperative programming language.
This method formalises states as tuples of values, where every component corresponds
to a program variable (i.e. the value of this variable in that state). Consequently,
program variables have no global names, and are identified by their position in the
state tuple. For example, suppose we have a program which has variables x, y, and

1Another approach is an abstract model of the state space. This approach is used by Hensel et
al [HHJ98] in a coalgebraic formalisation of object-oriented classes. Here the state space is modelled
as a black box on which several operations (or methods) are defined that can be used to obtain
information about the state space or modifying it.
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20 Chapter 3 Basic programming theory

z of type num, num, and bool respectively. The state in which x = 1, y = 2, and z =
T, is represented by the state (1, 2, T), and the state predicate x > 0 is represented
by (λ(x, y, z). x > 0). The major advantage of this method, is, as can be seen from
the example above, that it is very easy to represent the state of programs in which
different variables can take values of different types. The problem, however, with
this method is that, since program variables have no global names, it becomes almost
impossible to treat them in isolation. As a consequence, in the context of program
composition, it will be difficult to define what a shared variable is. Moreover, if a pro-
gram P has {x, y} as its variables whose values range over N, and if Q has {a, b} as its
variables whose values also range over N, then both programs share the same universe
of states, namely N× N. If those variables are intended to be distinct then some trick
will be required to impose the distinction. Another problem with this representation
arises with programs that have a variable number of program variables. For example,
the number of variables needed in a distributed sorting program on an arbitrary con-
nected network N obviously depends on the number of nodes in N . Consequently the
length of the tuples representing the states of this program also depends on N , and
hence is not fixed, which is a problem in HOL because tuples are required to have a
statically determined length, due to strong typing rules.

The second method is to represent states as functions from a universe Var of all
program variables to a universe Val of all values these variables may take. This
method is used by many who embed a program logic in HOL [Gor89, BW90, Hal91,
And92b, And92a, APP93, Pra95]. Since a program P , having a set of variables V
(i.e. V ⊆ Var), can neither influence nor depend on the values of the variables outside
V , state functions can be represented as total functions s ∈ Var→Val, and it makes
no difference whether or not s specifies values for variables outside V . For example,
consider a program P with variables {u, v}. A state of P , where Val in the universe
of num, can be:

• (s.u = 1)∧(s.v = 2)∧(∀x : x 6∈ {u, v} : (s.x = 0)), specifying values for variables
not in {u, v}, or

• (s′.u = 1)∧ (s′.v = 2), leaving the values for variables not in {u, v} unspecified.
Evidently, executing P in state s gives the same result as executing program P in
state s′, (s�{u, v}) or (s′ �{u, v}).

The major disadvantage of this second method is the way in which to represent
states of programs in which different variables can take values of different types. In
order to do this we need a multi-typed universe of values, which is the union of all
program variables’ types. For example, for a program that needs boolean and numeral
typed variables, we can define

num bool Val = NUM num
| BOOL bool

declaring a new data type constant2 num bool Val and constructor functions NUM
(∈ num→num bool Val) and BOOL (∈ bool→num bool Val), and take this type as our
multi-typed universe of values. The problem is that destructor functions have to be
defined, and all normal operations on numerals and booleans have to be lifted to work

2That is a type operator of arity 0.
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on this new type using the destructor and constructor functions. This is very tedious,
since, as the number of different types in a program increases, so does the number
of destructor and constructor functions and different symbols to represent the lifted
operations. And although on paper, with fancy notations and overloading, one can
hide this excessive use of different symbols and destructor and constructor functions,
when using a theorem prover this is not possible and consequently very disturbing for
the user. Since this thesis builds on Prasetya’s [Pra95] UNITY embedding in which it
was already decided to represent states as functions from Var to (polymorphic type)
Val because tuples were unsuitable to formulate compositionality results, we decided
to deal with this problem as follows. Our embedding is suitable for programs in which
different variables can take values of different types, without disturbing the user with
the details of the accompanying multi-typed value space. In order to achieve this, a
multi-typed value space is created and important operations on the component types
of this space and their properties are lifted to this space in such a way that the use
of destructor and constructor functions is hidden from the user as much as possible.
Obviously, this is only a partial solution for the problem since there will always be
programs which need more operations on the component types of this value space,
and types outside the value space fixed by us. As far as the first need is concerned,
HOL is extensible, and new operations can always be added, albeit at the cost of
burdening the user with the use of destructor and constructor functions. The second
need is more serious, and if there is no way around it, the value space cannot be used
and the user has to create another one that suits his or her needs.

3.2 The universe of values

The multi-typed value space used in this thesis is recursively defined as follows:

Val = NUM num
| BOOL bool
| REAL real
| STR string
| SET (Val)set
| LIST (Val)list
| TREE (Val)ltree

(3.2.1)

declaring a type Val which denotes the set of all values which can be generated by
using the constructor functions NUM, BOOL, REAL, STR, SET, LIST, and TREE.
Consequently, states are functions s ∈ Var→Val. The set of all program states will
be denoted by State.

Two kinds of types can be distinguished for the values that can be assigned
to a program variable: their actual type (i.e. Val), and their intended type (i.e.
num, bool, real, etcetera). In order to be able to declare the intended type of a pro-
gram variable, we need functions that check whether a value of type Val has the
intended type.
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Theorem 3.2.1 Checking the intended type

is num.v = ∃n :: (v = NUM.n) is num THM

is bool.v = ∃b :: (v = BOOL.b)) is bool THM

is real.v = ∃r :: (v = REAL.r) is real DEF

is str.v = ∃str :: (v = STR.str) is str THM

is set.v = ∃set : (FINITE.set) : (v = SET.set) is set THM

is list.v = ∃l :: (v = LIST.l) is list THM

is tree.v = ∃t :: (v = TREE.t) is tree THM

J

Consequently, a type declaration of a program, declaring a variable x of type num, a
variable y of type bool, and a variable z of type real corresponds to the following
predicate for all states s:

is num.(s.x) ∧ is bool.(s.y) ∧ is real.(s.z)

The destructor functions, accessing values of type Val, are defined as follows:

Definition 3.2.2 The destructor functions

∀n :: evaln.(NUM.n) = n evaln

∀b :: evalb.(BOOL.b) = b evalb

∀r :: evalr.(REAL.r) = r evalr

∀s :: eval str.(STR.s) = s eval str

∀s : FINITE.s : eval set.(SET.s) = s eval set

∀l :: eval list.(LIST.l) = l eval list

∀t :: eval tree.(TREE.t) = t eval tree

J

Note that these destructor functions are all partial functions defined as total ones by
using the mechanism of leaving values outside the correct domain unspecified. As a
consequence, nothing definite can be proved about e.g. evalb.(NUM.n). Therefore,
before one can conclude that e.g. NUM.(evaln.v) = v one has to prove is num.v. The
following theorems capture this for all possible values in Val.

Theorem 3.2.3 Constructing de-constructed values

∀v : is num.v : NUM.(evaln.v) = v consn o evaln IS id

∀v : is bool.v : BOOL.(evalb.v) = v consb o evalb IS id

∀v : is real.v : REAL.(evalr.v) = v consr o evalr IS id

∀v : is str.v : STR.(eval str.v) = v cons str o eval str IS id

∀v : is set.v : SET.(eval set.v) = v cons set o eval set IS id

∀v : is list.v : LIST.(eval list.v) = v cons list o eval list IS id

∀v : is tree.v : TREE.(eval tree.v) = v cons tree o eval tree IS id

J
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meaning notation definition
equality x eq y BOOL.(x = y)
inequality x neq y BOOL.(x 6= y)
increment incr.x NUM.(evaln.x + 1)
addition x plus y NUM.((evaln.x) + (evaln.y))
greater than x gt y BOOL.((evaln.x) > (evaln.y))
less than x lt y BOOL.((evaln.x) < (evaln.y))
greater or equal x gte y BOOL.((evaln.x) ≥ (evaln.y))
less or equal x lte y BOOL.((evaln.x) ≤ (evaln.y))
logical truth True BOOL.T
logical falsity False BOOL.F
conjunction x And y BOOL.((evalb.x) ∧ (evalb.y))
disjunction x Or y BOOL.((evalb.x) ∨ (evalb.y))
implication x Imp y BOOL.((evalb.x) ⇒ (evalb.y))
negation Not.x BOOL.(¬ (evalb.x))
universal
quantification Forall x : W.x : P.x BOOL.(∀x : evalb.(W.x) : (evalb.(P.x)))
existential
quantification Exists x : W.x : P.x BOOL.(∃x : evalb.(W.x) : (evalb.(P.x)))
construct lists put.x.l LIST.(CONS.x.(eval list.l))
head of a list head.l hd.(eval list.l)
tail of a list tail.l LIST.(tl.(eval list.l))
set element x INv s BOOL.(x ∈ eval set.s)
set characteristic CHFv.s (λ p. BOOL.(CHF.(eval set.s).p))
finite set FINITEv.s BOOL.(FINITE.(eval set.s))
set cardinality CARDv.s NUM.(CARD.(eval set.s))

Table 3.1: Val-lifted operators
J

Now we have to lift the operations on numerals, booleans, sets, etcetera, to work on
the new type Val. The most frequently used Val-lifted operators are listed in Table
3.1, together with their new names and definitions. As a notational convention:

when it is clear from the context that a Val-lifted operator is used, the
traditional notation for that operator will be overloaded.

We end this section with the definition of several operations we shall need in subse-
quent chapters. These definitions concern Val-lifted operations on Val-typed values
which return destructed values.
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Definition 3.2.4 INb

For all x and s of type Val:
x INb s = evalb.(x INv s)

Definition 3.2.5 CHFb

For all x of type Val:
CHFb.s = evalb ◦ (CHFv.s)

Definition 3.2.6 CARDn

CARDn = evaln ◦ CARDv

Definition 3.2.7 FINITEb

FINITEb = evalb ◦ FINITEv
J

3.3 State-functions, -expressions, and -predicates

A state-function is a function of type State→α, where α is an arbitrary type. For
example:

(λs. evaln.(s.x)) (3.3.1)

is a state-function of type State→num that, applied to a state s, evaluates (or de-
structs) the Val-typed value that is held by program-variable x in state s.

A state-expression is a state-function with target type Val. For example:

(λs. s.x plus s.y) (3.3.2)

is a state expression, adding the value of variable x in state s to the value of variable
y in state s. The set of all state-expressions will be denoted by Expr.

A state-predicate is a state-expression the values in whose range have intended
type bool.

Definition 3.3.1 state-predicate is BOOL DEF

For all p ∈ σ→Val,

state pred.p = ∀s :: is bool.(p.s)
J

Note that the states in Definition 3.3.1 are assumed to be of arbitrary type σ, but can
of course be instantiated with State. In order to obtain general definitions, we shall,
whenever possible, represents states by arbitrary types that can be instantiated with
State.

A state-predicate is used to describe a set of states satisfying a certain property.
For instance:

(λs. (s.x eq s.y) And Not(s.y gte (NUM.2))) (3.3.3)
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Definition 3.3.2 State-lifting variables VAR EXPR DEF

For a variable v of actual type Val, and s ∈ State:

VAR.v.s = s.v

Definition 3.3.3 State-lifting constants CONST EXPR DEF

For a constant c of any type α, and s of arbitrary type σ:

CONST.c.s = c

Definition 3.3.4 State-lifting unary operators UN APPLY DEF

For an unary operator O of type α→β, e of type σ→α, and s of type σ:

UN APPLY.O.e.s = O.(e.s)

Definition 3.3.5 State-lifting binary operators BI APPLY DEF

For a binary operator O of type α→β→γ, e1 of type σ→α, e2 of type σ→β, and s of
type σ:

BI APPLY.O.e1.e2.s = O.(e1.s).(e2.s)

Figure 3.1: State-lifting
J

is a state-predicate describing all states s in which the value of variable x equals the
value of variable y, and the value of variable y is not greater than or equal to two.

Note that in other work [Gor89, BW90, Pra95], where program variables can only
take values of one and the same type, state-predicates can be declared to have type
State→bool. In this thesis program variables can take values of different (intended)
types. Consequently, since state-predicates are just a special kind of state-expressions
and hence can be used at the right hand side of an assignment to a variable having
intended type bool, state-predicates must have type State→Val.

Since state-expressions constitute the basis for constructing programs, and state-
functions and state-predicates constitute the basis for reasoning about programs, we
obviously need to improve their readability throughout the rest of this thesis, and,
if possible, avoid having to use the Val-lifted operations from the previous section.
Following [Gor89, BW90, Hal91, APP93, Pra95] this is done by state-lifting the var-
ious constructs from which state-functions can be build, and use overloading and
notational conventions to denote these state-lifted constructs.

In this thesis, variables having actual type Val, constants of any type α, unary
and binary operators of type α→β and α→β→γ respectively, can all be state-lifted
by using one of the functions listed in Figure 3.1.

To improve readability, the notational conventions introduced have to adhere to
the traditional notation of the standard operators. We therefore adopt the convention
that (on paper):
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the state-lifted versions of standard operators are denoted by their tradi-
tional notation subscripted with an ‘∗’

For example, state-function (3.3.1) on page 24 is denoted by:

evaln∗. x∗ where evaln∗ = UN APPLY.evaln
x∗ = VAR.x

State-expression (3.3.2) on page 24 is denoted by:

x∗ +∗ y∗ where +∗ = BI APPLY.plus

State predicate (3.3.3) on page 24 becomes:

(x∗ =∗ y∗) ∧∗ ¬∗(2∗ ≥∗ y∗) where e.g. ∧∗ = BI APPLY.And
¬∗ = UN APPLY.Not
2∗ = CONST.(NUM.2)

All other unary and binary operators, not appearing in the examples above, are
state-lifted similarly using UN APPLY and BI APPLY respectively. The universal and
existential quantifier cannot be state-lifted using one of the aforementioned functions.
Consequently, they are state-lifted separately as follows:

Definition 3.3.6 State-lifting the universal quantifier eRES qAND

For all W ∈ α→Val, P ∈ α→σ→Val

∀∗ x : W.x : P.x = (λs.Forall x : W.x : P.x.s)

Definition 3.3.7 State-lifting the existential quantifier eRES qOR

For all W ∈ α→Val, P ∈ α→σ→Val

∃∗ x : W.x : P.x = (λs.Exists x : W.x : P.x.s)
J

Although the ∗-notation improves readability, it is often already clear from the context
that a state-lifted operator is meant and not its unlifted counterpart. Therefore, we
adopt the further convention that:

when it is clear from the context that a state-lifted operator is used, the ∗
can be dropped, and the traditional notation for that operator is overloaded.

Although on paper this kind of overloading usually does not cause confusion, in HOL
overloading is not possible, and different names have to be introduced. Summarising,
there are three different notations for state-lifted operators:

• the traditional notation, subscripted with an ∗. Use: on paper; when it is not
clear from the context that the state-lifted version of the operator is used.

• the traditional notation, overloaded. Use: on paper; when it is clear from the
context that the state-lifted version of the operator is used. This one will be
the most frequently used.
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overloaded meaning HOL HOL
notation definition notation
p = q (λs. p.s eq q.s) EQ DEF p EQ q
p 6= q (λs. p.s neq q.s) nEQ DEF p nEQ q
x + y (λs. x.s plus y.s) ePLUS DEF x !+! y
x < y (λs. x.s lt y.s) LT DEF x !<! y
x > y (λs. x.s gt y.s) GT DEF x !>! y
x ≤ y (λs. x.s lte y.s) LTE DEF x !<=! y
x ≥ y (λs. x.s gte y.s) GTE DEF x !>=! y
true (λs. True) eTT DEF true
false (λs. False) eFF DEF false
p ∧ q (λs. p.s And q.s) eAND DEF p |/\| q
p ∨ q (λs. p.s Or q.s) eOR DEF p |\/| q
p ⇒ q (λs. p.s Imp q.s) eIMP DEF p |==>| q
¬p (λs. Not.p) eNOT DEF not p
(∀i : W.i : P.i)
(∀i : i ∈ W : P.i) (λs. (Forall i : W.i : P.i.s)) eRES qAND |!!|i::W.P i

(∃i : W.i : P.i)
(∃i : i ∈ W : P.i) (λs. (Exists i : W.i : P.i.s)) eRES qOR |??|i::W.P i

CONS.x.l (λs. put.(x.s).(l.s)) PUT DEF PUT x l
hd.l (λs. head.(l.s)) HEAD DEF HEAD l
tl.l (λs. tail.(l.s)) TAIL DEF TAIL l
x ∈ S (λs. x.s INv S.s) INe DEF x INe S

Overloading of the standard operations, when it is clear from the context that p, q, x, y,
and S are state predicates of type State→Val.

Table 3.2: Overloading of the standard operators on state-predicates
J

• the HOL notation, which, due to restricted possibilities of inventing new names
in HOL, is not entirely consistent for the state-lifted operators, although an
effort to establish the latter has been made. Use: in HOL definitions, theorems,
and theories.

It is very important that the reader is well aware of these different notations. To
emphasise this Table 3.2 summarises the most frequently used overloaded notations
and their meaning for the state-lifted operators in this thesis as well as the notation
used in the accompanying HOL theories.

Now that the notational conventions and precise characterisations of the notions
state-function, -expression, and -predicate have been ascertained, the rest of this
subsection describes some of their properties.

A state-predicate p is said to hold everywhere if p.s holds for all states s:
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Definition 3.3.8 Everywhere Operator eSEQ DEF

For all p ∈ σ→Val,

[p] = (∀s :: evalb.(p.s))
J

Projection � (Definition 2.8.118) can be lifted to the state-function level:

Definition 3.3.9 � on (state-)functions p Pj DEF

For all s ∈ σ1→σ2, f ∈ (σ1→σ2)→α, and V ⊆ σ1,

f � V = (λs. (f.(s � V )))
J

A state-function f is confined by a set of variables V , denoted by f C V , if f does not
restrict the value of any variable outside V :

Definition 3.3.17 State-function Confinement CONF DEF

For all f ∈ (σ1→σ2)→α, and V ⊆ σ1,

f C V = (∀s, t :: (s�V = t�V ) ⇒ (f.s = f.t))
J

For example, x∗ +∗ 1∗ <∗ y∗ is confined by {x, y} but not by {x}. Note that if f is
confined by V , f does not contain useful information about variables outside V , or
similarly, f does not depend on the values of the variables outside V . The following
theorem states this:

Theorem 3.3.18 Confinement related to Projection CONF EQ p Pj

f C V = (f = (f � V ))
J

Evidently, state-predicates true and false are confined by any set. Moreover, con-
finement is preserved by any state-function that is constructed using the state-lifting
constructions from definitions 3.3.2 till 3.3.7, see Figure 3.2. As a rule of thumb, any
state-function f is confined by free.f , that is, the set of variables occurring free in f .
However, free.f is not necessarily the smallest set which confines f , e.g. ∅ confines the
state-predicate “0 = x ∨ 0 6= x”. The following theorem states that the confinement
operator is monotonic in its second argument.

Theorem 3.3.19 C Monotonicity CONF MONO

V ⊆ W ∧ (f C V ) ⇒ (f C W )
J
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Theorem 3.3.10 CONF VAR EXPR

For all variables v, and sets V of variables:

v ∈ V
(VAR.v) C V

Theorem 3.3.11 CONF CONST

For all constants c of arbitrary type α, and sets V of variables:

(CONST.c) C V

Theorem 3.3.12 CONF UN APPLY

For all unary operators O of type Val→β, state-functions f , and sets V of variables:

f C V
(UN APPLY.O.f) C V

Theorem 3.3.13 CONF BI APPLY

For all binary operators O of type Val→Val→γ, state-functions f1, f2, and sets V of
variables:

(f1 C V ) ∧ (f2 C V )
(BI APPLY.O.f1.f2) C V

Theorem 3.3.14 CONF FOLDR BI APPLY

For all binary operators O of type Val→Val→Val, state-functions f , lists of state-
functions l, and sets V of variables:

(f C V ) ∧ (∀g : is el.g.l : (g C V ))
(foldr.(BI APPLY.O).f.l) C V

See A.4.1217 and A.4.4217 for the definitions of is el and foldr respectively.

Theorem 3.3.15 CONF eRES qAND

For all W ∈ α→Val, P ∈ α→State→Val, and sets V of variables:

∀x : evalb.(W.x) : ((P.x) C V )
(∀∗ x : W.x : P.x) C V

Theorem 3.3.16 CONF eRES qOR

For all W ∈ α→Val, P ∈ α→State→Val, and sets V of variables:

∀x : evalb.(W.x) : ((P.x) C V )
(∃∗ x : W.s : P.x) C V

Figure 3.2: Confinement is preserved by the state-lifting constructions.
J
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3.4 Actions

In this thesis, the actions of a program can be multiple assignments or guarded mul-
tiple assignments. In order to be able to define transformation functions on actions,
like for example augmented superposition of assignments or strengthening guards, we
need to make a somewhat deeper embedding of actions than Prasetya [Pra95]. As a
consequence, the abstract syntax of actions is defined by a recursive data type, and
their semantics is defined as a recursive function on this type.

3.4.1 The abstract syntax of actions

The set of all actions is defined by the following recursive data type:

ACTION = ASSIGN (Var)list (Expr)list
| GUARD Expr ACTION

(3.4.1)

Note that expressions (i.e. elements of Expr (page 24)) are not deeply embedded.
Hence we have an embedding that is deeper than Prasetya’s but that is not the deep-
est one possible.

To stick to traditional notation, we adopt the convention that:

ASSIGN.[x, y, z].[e1, e2, e3] is denoted by x, y, z := e1, e2, e3

GUARD.g.A is denoted by if g then A

To check whether an action is a multiple assignment or a guarded action, we have the
functions is assign and is guard, which are specified by:

Definition 3.4.1 is assign

(∀lv, le :: is assign.(ASSIGN.lv.le)) ∧ (∀g,A :: ¬(is assign.(GUARD.g.A)))

Definition 3.4.2 is guard

(∀lv, le :: ¬(is guard.(ASSIGN.lv.le))) ∧ (∀g, A :: is guard.(GUARD.g.A))
J

To obtain various components of an action, like e.g. its guard, or the variables it
assigns to, we have the following functions:

Definition 3.4.3 assign vars

∀lv, le :: assign vars.(ASSIGN.lv.le) = lv
∀g, A :: assign vars.(GUARD.g.A) = assign vars.A

Definition 3.4.4 assign exprs

∀lv, le :: assign exprs.(ASSIGN.lv.le) = le
∀g, A :: assign exprs.(GUARD.g.A) = assign exprs.A

J
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Definition 3.4.5 assign of

∀lv, le :: assign of.(ASSIGN.lv.le) = ASSIGN.lv.le
∀g, A :: assign of.(GUARD.g.A) = assign of.A

Definition 3.4.6 guard of

∀lv, le :: guard of.(ASSIGN.lv.le) = true∗
∀g, A :: guard of.(GUARD.g.A) = g ∧∗ (guard of.A)

J

The operator that models simultaneous execution of its argument assignments, shall
be denoted by ‖. Intuitively, it works like:

x, y := 1, 2 ‖ w, z := 3, 4 equals x, y, z, w := 1, 2, 3, 4

Formally it is defined as a partial function on assignments, leaving the result on
guarded actions unspecified:

Definition 3.4.7 Simultaneous execution of assignments SIM

ASSIGN.lv1.le1 ‖ ASSIGN.lv2.le2 = ASSIGN.(lv1 ++ lv2).(le1 ++ le2)
J

Note that this operator could not have been defined without the deeper embedding
of actions.

3.4.2 The semantics of actions

The semantics of an action from ACTION, is an executable action that can change the
state of a program. Following [Pra95], we will represent an executable action as a
relation on State. That is, an executable action a will have the type State→State→
bool. The interpretation of a.s.t is that t is a possible state resulting from execution
of a at state s. For example, the executable action that does not change the value
of any variable, and the executable action that forbids any transition, called skip and
miracle respectively, are defined by:

Definition 3.4.8 Skip skip THM

skip = (λs.t. s = t)

Definition 3.4.9 Miracle MIRA

miracle = (λs.t. false)
J

An action that is always ready to make a transition is called always enabled.
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Definition 3.4.10 Always Enabled Action ALWAYS ENABLED

�Ena = (∀s :: (∃t :: a.s.t))
J

Synchronised execution of two executable actions a and b, i.e. a state-transition can
be made only if both a and b agree on it, is modelled by the operator u.

Definition 3.4.11 Synchronisation Operator rINTER

a u b = (λs.t. a.s.t ∧ b.s.t)
J

Projection � can be lifted to the action level as follows:

Definition 3.4.12 � on Action a Pj DEF

(a�V ).s.t = a.(s�V ).(t�V )
J

The executable action that implements an action a guarded with state-predicate g,
can be defined by:

Definition 3.4.13 Executable guarded action guard action DEF

guard.g.a = (λs, t. (evalb.(g.s) ⇒ a.s.t) ∧ (¬(evalb.(g.s)) ⇒ skip.s.t))
J

Note that executing guard.g.a is state s, results in a skip when the guard g is disabled
in state s. Consequently, we can prove the following theorem:

Theorem 3.4.14 Guarded action is always enabled guarded action ALWAYS ENABLED

∀g a ::
�En a

�En guard.g.a
J

When defining an executable action that implements multiple assignment we have to
be careful. In [Pra95] a single assignment is defined as follows:

update1.(x, e) = (λs.t. t.x = e.s)

single assignment1.x.e = update1.(x, e) u skip�{x}c

that is, x is assigned the value of expression e evaluated in state s, and all other
variables which are not equal to x stay the same. Extending this definition of single
assignments to multiple assignments gives us:

assign1.lv.le = foldr. u .(skip�(l2s.lv)c).(map.update1.(zip.lv.le))
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However, using this definition to assign a different value to the same variable we get
the following.

assign1.[v, v].[2∗, 3∗]
= (definition of assign1, Definitions A.5.8 and A.4.3 of l2s and zip)

foldr. u .(skip�{v}c).(map.update1.[(v, 2∗), (v, 3∗)])
= (definition of update1, Definitions A.4.4 and A.4.2 of foldr and map)

(λs t.t.v = 2) u (λs t.t.v = 3) u (λs t.s�{v}c = t�{v}c)
= (logic)

(λs t.false)
= (Definition 3.4.9 of miracle)

miracle

The UNITY programming notation [CM89] gives no clear semantics of actions that
try to assign a different value to the same variable. However, miraculous actions are
not allowed in UNITY programs.

Prasetya [Pra95] has dealt with miraculous actions by defining conditions a pro-
gram has to satisfy in order for it to be a well-formed UNITY program, and ensuring
that progress properties can only be proved for these well-formed UNITY programs.
Obviously, including always-enabledness of all actions in the conditions of this well-
formedness predicate rules out all miraculous actions.

Here, since we have a deep embedding of actions, we can prevent the construction
of miraculous actions, and therefore eliminate the need to deal with them, altogether.
To achieve this we have defined the executable action implementing multiple assign-
ment as follows.

First, a function that updates a state by assigning a new value to some variable
is defined:

Definition 3.4.15 Updating variables in a state update DEF

update.(x, c).s = (λy. (y = x) → c | s.y)
J

Then the executable assignment, assigning the value of state-expression e in some
state s to variable x can be defined as:

single assign.x.e = (λs, t. t = update.(x, (e.s)).s)

Generalising this to multiple assignments gives us:

Definition 3.4.16 Executable multiple assignment assign DEF

assign.lv.le = (λs, t. t = foldr. ◦ .id.(map.update.(zip.lv.(map.(λe. e.s).le))).s)
J

Now, trying to assign a different value to the same variable results in the following:

assign.[v, v].[2∗, 3∗].s.t
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= (Definitions A.4.3 and A.4.2 of zip and map)
t = foldr. ◦ .id.[update.(v, 2), update.(v, 3)].s

= (Definition A.4.4 of foldr)
t = (update.(v, 2) ◦ update.(v, 3) ◦ id) s

= (Definition A.2.1 of composition, and id)
t = update.(v, 2).(update.(v, 3).s)

= (Definition 3.4.15 of update)
∀x :: t.x = ((x = v) → 2 | ((x = v) → 3 | s.x))

So, variable v is assigned the value of the first expression on the expression-list eval-
uated in s. Although it is debatable whether this is a desirable semantics for the
assignment trying to assign two different values to the same variable, we can prove
however that this definition of multiple assignments is always enabled.

Theorem 3.4.17 Multiple assignment is always enabled actions semantics

∀lv le :: �En assign.lv.le
J

Now, the function defining the semantics of actions from ACTION can be given. It is
called compile, since it sort of compiles an abstract representation of an action into
an executable action. It has type:

compile ∈ ACTION→ State→ State→ bool

and is defined as:

Definition 3.4.18 Compiling actions compile DEF

∀lv, le :: compile.(ASSIGN.lv.le) = assign.lv.le
∀g, A :: compile.(GUARD.g.A) = guard.g.(compile.A)

J

For any action A ∈ ACTION, we shall call compile.A the executable of A. Moreover,
we adopt the convention that actions from the set ACTION are denoted by capitals,
and that executables are denoted by small letters.

Finally it is not hard to prove that we can only construct actions which are always
enabled.

Theorem 3.4.19 compile ACTION ALWAYS ENABLED

∀A : A ∈ ACTION : �En compile.A
J

3.4.3 The normal form and well-formedness of actions

Actions in ACTION can be finitely nested if-then constructs. Obviously, these can all
be reduced to one single if-then construction, since e.g. if p and q are state-predicates,
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then

if p then if q then A (3.4.2)

has the same semantics as

if p ∧∗ q then A (3.4.3)

If A is an assignment, then we call 3.4.3 the normal form of 3.4.2. Formally, the
normal form of an action is defined by the following function:

Definition 3.4.20 Normal Form of an action NF

∀lv le :: NF.(ASSIGN.lv.le) = ASSIGN.lv.le
∀g A :: NF.(GUARD.g.A) = GUARD.(g ∧∗ (guard of.A)).(assign of.A)

J

There are actions in the set ACTION that do not have a well defined semantics in the
sense that compiling them yields a value about which nothing definite can be proved.
Actions that do not have a well defined semantics are:

• multiple assignments (ASSIGN.lv.le), where (#lv 6= #le). Since nothing definite
can be proved about zip when it is applied to two lists of different lengths,
nothing definite can be proved about the the semantics of multiple assignments
(definition 3.4.16) when applied to lists of different lengths.

• guarded action of which the state-expression denoting the guard is not a state-
predicate. Since nothing definite can be proved about evalb when it is applied
to a value from Val that does not have intended type bool, nothing definite can
be proved about the the semantics of guarded actions (definition 3.4.13) having
a guard that is not a state-predicate.

Actions in ACTION that do have a well-defined semantics are called well-formed, and
they are characterised as follows:

Definition 3.4.21 Well-formed action WF ACTION

∀lv le :: WF action.(ASSIGN.lv.le) = (length.lv = length.le)
∀g A :: WF action.(GUARD.g.A) = (state pred.g ∧ WF action.A)

J

Note that actions where the same variable appears more than once in the variable
list, do have a well-defined3 semantics. Consequently, such actions are considered to
be well-formed.

3Although this semantics may not be desirable.
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3.4.4 Properties of actions

A set of variables is V ignored-by an action A, denoted by V 8 A, if executing A’s
executable in any state does not change the values of these variables. Variables in V c

may however be written by A.

Definition 3.4.22 variables Ignored-by action dIG BY DEF

V 8 A = (∀s, t :: compile.A.s.t ⇒ (s�V = t�V ))
J

Evidently, a well-formed assignment ignores all variables not occuring in its list of
variables (i.e. at the left hand side of :=). Note that this is not necessarily the
smallest set that is ignored by an assignment, e.g. x := x ignores the whole universe
of variables. A guarded action if g then A, ignores the same variables as A.

Theorem 3.4.23 variables Ignored-by assignment compile ACTION ASSIGN SAT WC

WF action.(ASSIGN.lv.le) ∧ (∀v : is el.v.lv : v 6∈ V )
V 8 ASSIGN.lv.le

Theorem 3.4.24 variables Ignored-by guarded action compile ACTION GUARD SAT WC

V 8 A
V 8 GUARD.g.A

J

A set of variables V is said to be invisible-to an action A, denoted by V 9 A, if the
values of the variables in V do not influence the result of A’s executable, hence A
only depends on the variables outside V .

Definition 3.4.25 variables Invisible-to action dINVI DEF

V 9 A = ∀s, t, s′, t′ :: ((s�V c = s′ �V c) ∧ (t�V c = t′ �V c) ∧
(s′ �V = t′ �V ) ∧ compile.A.s.t)

⇒ compile.A.s′.t′

J

A set of variables V is invisible to a well-formed assignment, if non of the variables
in V occur in the variable list of the assignment (i.e. at the left hand side of :=), and
all expressions in the list of expressions of the assignment (i.e. at the right hand side
of :=) do not depend on the values of the variables in V .

A set of variables V is invisible to an action A guarded with guard g, if it is invisible
to A and the guard g does not depend on the values of the variables in V .
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Theorem 3.4.26 variables Invisible-to assignment compile ACTION ASSIGN SAT RC

WF action.(ASSIGN.lv.le) ∧ (∀v : is el.v.lv : v 6∈ V ) ∧ (∀e : is el.e.le : e C V c)
V 9 ASSIGN.lv.le

Theorem 3.4.27 variables Invisible-to guarded action compile ACTION GUARD SAT RC

V 9 A ∧ g C V c

V 9 GUARD.g.A
J

The operators 8 and 9 are both anti-monotonic in their first argument.

Theorem 3.4.28 8 Anti-monotonicity dIG BY MONO

(V ⊆ W ) ∧ (W 8 A) ⇒ (V 8 A)

Theorem 3.4.29 9 Anti-monotonicity dINVI MONO

(V ⊆ W ) ∧ (W 9 A) ∧ (W 8 A) ⇒ (V 9 A)
J

3.4.5 Transformations on actions

In this section we shall define two transformations on actions, namely strengthening
guards and augmentation. Transforming an action A by strengthening its guard with
state-predicate g, is defined as:

Definition 3.4.30 Strengthening guards of actions strengthen guard

strengthen guard.g.A = GUARD.(g ∧∗ guard of.A).(assign of.A)
J

An action (Ac) can be combined with an assignment (As) to yield an augmented
action:

Definition 3.4.31 Augmenting an action augment DEF

augment.Ac.As = GUARD.(guard of.Ac).((assign of.Ac) ‖As)
J

When an action Ac is transformed by augmentation to yield augment.Ac.As, we say
that Ac is augmented with assignment As. Some properties of strengthening guards
and augmentation can be found in Figure 3.3.
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Theorem 3.4.32 preservation of 8 streng guard PRESERVES IG BY

V 8 A
V 8 strengthen guard.g.A

Theorem 3.4.33 preservation of 9 streng guard PRESERVES INVI

V 9 A ∧ g C V c

V 9 strengthen guard.g.A

Theorem 3.4.34 streng augment COMMUTE

strengthen guard.g.(augment.Ac.As) = augment.(strengthen guard.g.Ac).As

Theorem 3.4.35 preservation of 8 augment PRESERVES IG BY

V 8 Ac ∧ V 8 As ∧ is assign.As ∧ WF action.Ac ∧ WF action.As
V 8 augment.Ac.As

Theorem 3.4.36 WF augment

is assign.As ∧ WF action.Ac ∧ WF action.As
WF action.(augment.Ac.As)

Figure 3.3: Properties of strengthening guards and augmentation
J

3.5 Specification

Reasoning about actions can be done by means of Hoare triples [Hoa69]. If p and q
are state-predicates, and A is an action, then {p} A {q} means that if A is executed in
any state satisfying p, it will end in a state satisfying q. Hoare triples can be defined
as follows:

Definition 3.5.1 Hoare Triple HOAe DEF

{p} A {q} = (∀s, t :: evalb.(p.s) ∧ compile.A.s.t ⇒ evalb.(q.t))
J

Basic laws for Hoare triples, like precondition strengthening and postcondition weak-
ening, can be found in e.g. [Gor89, Dij76, Gri81].



the simplicity of formal manipulations is at least as important as
the expressive power of an operator

– Jayadev Misra

Chapter 4

UNITY

I n this chapter we give an overview of the UNITY theory and Prasetya’s exten-
sions. We shall concentrate on those concepts that are needed in the rest of this
thesis. For a more thorough treatment the reader is referred to [CM89, Pra95].

Sections 4.1 through 4.3 discuss the UNITY programming notation. Section 4.4 ex-
plains the UNITY specification and proof logic. Sections 4.5 and 4.6 respectively
describe Prasetya’s alternative progress, and convergence operator. Section 4.7 for-
malises superposition refinement of UNITY programs.

4.1 UNITY programs

A UNITY program consists of declarations of variables, a specification of their initial
values, and a set of actions.

An execution of a UNITY program starts in a state satisfying the initial condition
and is an infinite and interleaved execution of its actions. In each step of the execution
some action is selected and executed atomically. The selection of actions is weakly
fair, i.e. non-deterministic selection constrained by the following fairness rule:

Each action is scheduled for execution infinitely often, and hence cannot
be ignored forever.

Note that there is a difference between Dijkstra’s guarded commands [Dij76] and
UNITY. In the guarded command language, there is no fairness constraint. Conse-
quently, only actions with enabled guards are eligible for execution. If an arbitrary
action would be selected for execution, then it would be possible that an action whose
guard is false is chosen forever, and hence no progress is guaranteed. In UNITY, how-
ever, it is not necessary to choose an action of which the guard is true. An action that
does not change the program state (e.g. because the guard is false) may be selected
for execution, since – due to the fairness constraint – it can only be executed a finite
number of times. An action whose guard is enabled – if such an action exists – is
selected eventually for execution, and hence some progress is guaranteed.

For illustration, consider the UNITY program in Figure 4.1. The read and write
sections declare, respectively, the read and write variables of the program. The init

39
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prog Example
read {a, x, y}
write {x, y}
init true
assign

if a = 0 then x := 1
8 if a 6= 0 then x := 1
8 if x 6= 0 then y, x := y + 1, 0

Figure 4.1: The program Example
J

section specifies the initial states of the program. In Figure 4.1 the initial condition
is true, meaning that the program may start in any state. The assign section lists
the actions of the programs, separated by the 8 symbol. The reader can verify that
during the execution of this program eventually x = 0 will hold and if y = C, then
eventually y > C will hold. As far as UNITY is concerned, the actions of this program
can be implemented sequentially, fully parallel or anything in between, as long as the
atomicity and the fairness condition of UNITY are met. Consequently, in constructing
a UNITY program one is encouraged to concentrate on the ’real’ problem, and not
to worry about ordering and allocation of the actions, as such are considered to be
implementation issues.

A UNITY program P can be modelled by a quadruple (A, J, Vr, Vw) where A ⊆
ACTION is a set consisting of P ’s actions, J ∈ Expr is a state-predicate describing the
possible initial states of P , and Vr, Vw ⊆ Var are sets containing P ’s read and write
variables respectively. The set of all possible quadruples (A, J, Vr, Vw) shall be denoted
by Uprog. To access each component of such an Uprog object, the destructors a,
ini, r, and w are introduced. They satisfy the following property:

Theorem 4.1.1 Uprog Destructors

P ∈ Uprog = (P = (aP, iniP, rP,wP ))
J

The operators on actions can now be lifted to the program level as follows:

Definition 4.1.2 Variables Ignored-by Program dIG BY Pr

V : P = ∀A : A ∈ aP : V 8 A

Definition 4.1.3 Variables Invisible-to Program dINVI Pr

V ; P = ∀A : A ∈ aP : V 9 A
J

Due to the absence of ordering in the execution of a UNITY program, the parallel
composition of two programs can be modelled by simply merging the variables and
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〈Unity Program〉 ::= prog 〈name of program〉
read 〈set of variables〉
write 〈set of variables〉
init 〈state-predicate〉
assign〈actions〉

〈actions〉 ::= 〈action〉 |
| 〈actions〉 8 〈actions〉
| 8 i : quantificationi : 〈action〉i

〈action〉 ::= 〈assignment〉 | 〈guarded action〉
〈assignment〉 ::= 〈variable-list〉 := 〈expr-list〉

| 〈assignment〉 ‖ 〈assignment〉
〈variable-list〉 ::= 〈variable〉 {, 〈variable〉}
〈expr-list〉 ::= 〈expr〉 {, 〈expr〉}
〈guarded action〉 ::= if〈expr〉 then 〈action〉

Where 〈expr〉 are state-expressions from Expr, and 〈variable〉 are variables
in the universe Var.

Figure 4.2: Syntax of UNITY programs.
J

actions of both programs. In UNITY parallel composition is denoted by 8. In [CM89]
the operator is also called program union.

Definition 4.1.4 Parallel Composition dPAR

P 8Q = (aP ∪ aQ, iniP ∧ iniQ, rP ∪ rQ,wP ∪wQ)
J

Parallel composition is reflexive, commutative, associative, and has the identity ele-
ment (∅, true, ∅, ∅).

4.2 The UNITY programming language

The syntax of UNITY programs in BNF notation is displayed in Figure 4.2; it deviates
slightly from the one in [CM89] in that the always section has been omitted, and the
declare section has been splitted into read and write parts.

prog states the name of the UNITY program that is being specified.

read and write sections declare the read and write variables of the program respec-
tively. Unless stated otherwise, variables having different names are assumed to
be different variables.
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init states a state-predicate, specifying the initial condition of the UNITY program.

assign declares a set of actions separated by the symbol 8. A quantified action de-
notes a set of actions (separated by 8) which is obtained by instantiating each
〈action〉i from the quantified action with the appropriate instances of the vari-
ables bound by quantificationi. An important restriction on quantificationi, is
that it should not name program variables whose values may change during pro-
gram execution. This restriction guarantees that the set of actions of a UNITY
program is fixed at all times, i.e. actions can neither be created nor deleted
during program execution. An example of a quantified action is:

8i : 0 ≤ i < 10 : A[i] := 0 (sometimes abbreviated by: 80≤i<10 A[i] := 0)

which generates a set of ten actions that assign 0 to the first 10 elements of
some array A.

An action is an element from ACTION, and hence can be either a multiple
assignment or a guarded action. Multiple assignments can be composed using
the ‖ operator1 defined in Section 3.4.1.

4.3 The well-formedness of a UNITY program

Following [Pra95]2, a UNITY program must satisfy four syntactic requirements re-
garding its well-formedness:

i The program should have at least one action.
ii A write variable is also readable.
iii The actions of a program should only write to the declared write variables.
iv The actions of a program should only depend on the declared read variables.

The notion of ignored-by is used to formalise requirement iii. All actions of a program
P only write to the declared write variables, if and only if these actions do not change
the values of variables that are not declared as write variables, i.e. variables in the set
(wP )c. So, the third requirement is precisely (wP )c : P . The notion of invisible-to
is used to formalise requirement iv. All actions of a program P only depend on the
declared read variables, if and only if changing the values of the variables that are not
declared as read variables (i.e. variables in the set (rP )c) will not influence a’s result,
hence a only depends on the variables outside (rP )c which are precisely the declared
read variables. So the last syntactical requirement can be formalised by (rP )c ; P .
Recall that any UNITY program is an object of type Uprog. Accordingly, a predicate
Unity can be defined to express the well-formedness of an Uprog object. From here
on, a “UNITY program” is an object satisfying the predicate Unity.

1Note that this is merely syntactic sugar.
2Actually in [Pra95] there is also the requirement that all actions should always be enabled. Since

all actions from the universe ACTION are always enabled (Theorem 3.4.19) this requirement could be
dropped.
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Definition 4.3.1 Unity dUNITY

Unity.P = (aP 6= ∅) ∧ (wP ⊆ rP ) ∧ ((wP )c : P ) ∧ ((rP )c ; P )
J

Note that the identity element of program composition 8, is not a well-formed UNITY
program.

4.4 UNITY specification and proof logic

UNITY logic is used to specify the correctness expectations or properties of a UNITY
program. UNITY specifications, and program properties are built from state-predicates
and relations on them. Traditionally, two kinds of program properties are distin-
guished:

• Safety properties stating that some undesirable behaviour does not occur;
• Progress properties stating that some desirable behaviour is eventually realised.

Consequently, the UNITY logic contains two basic relations on state-predicates cor-
responding to these properties. For a UNITY program P and state-predicates p, q ∈
Expr, these are defined by:

Definition 4.4.1 Unless (Safety Property) UNLESSe

P` p unless q = (∀A : A ∈ aP : {p ∧ ¬q} A {p ∨ q})

Definition 4.4.2 Ensures (Progress Property) ENSURESe

P` p ensures q = (P` p unless q) ∧ (∃A : A ∈ aP : {p ∧ ¬q} A {q})
J

Safety properties are described by the unless relation (definition 4.4.1). Intuitively,
P` p unless q implies that once p holds during an execution of P , it remains to hold
at least until q holds. Note that this interpretation gives no information whatsoever
about what p unless q means if p never holds during an execution.

Progress properties are described by the ensures relation. As can be seen from
Definition 4.4.2, P` p ensures q encompasses p unless q. Furthermore, it ensures that
there exists an action that can – and, as a result of the weakly fair execution of
UNITY programs, will – establish q.

Note that unless and ensures are defined in terms of properties of single actions,
and consequently can be derived directly from the program text. For illustration,
consider again the program Example in Figure 4.1. From the program text, it is easily
verified that the following properties hold:

( Example` (a = X) unless false) and ( Example` (a = 0) ensures (x = 1))

The first property states that the program Example cannot change the value of a. The
second property describes single-action progress from, a = 0 to x = 1.
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Theorem 4.4.3 Anti-Reflexivity UNLESS ANTI REFL

P` p unless ¬p

Theorem 4.4.4 �Conjunction STABLEe CONJ

P :
(�p) ∧ (�q)

�(p ∧ q)

Theorem 4.4.5 dIG BY and CONF IMP STABLEe

(V : P ) ∧ (p C V )

P`�p

Theorem 4.4.6 Fixed Point Safety is SKIP IMP UNLESS

P :
FP.p

∀r q :: (p ∧ r) unless q

Figure 4.3: Some properties of unless, �, and FP
J

A state-predicate p is a stable predicate in program P , if, once p holds during any
execution of P , it will remain to hold forever.

Definition 4.4.7 Stable Predicate STABLEe

P`�p = P` p unless false
J

Consequently, if p holds initially and is stable in program P , it will hold throughout
any execution of P , and hence it is an invariant of P . Invariants shall be denoted by
P` �p.

Definition 4.4.8 Invariant INVe

P` �J = ((iniP ⇒ J) ∧ ( P`�J))
J

A state-predicate p is a fixed-point of program P , if, once predicate p holds during the
execution of P , the program can no longer make any progress. In other words, once
p holds during the execution of P , the program will subsequently behave as skip.

Definition 4.4.9 Fixed Point FPe DEF

P` FP.p = ∀A : A ∈ aP : (∀s t :: (evalb.(p.s) ∧ compile.A.s.t) ⇒ (s = t))
J



4.5 Prasetya’s � operator 45

Theorem 4.5.1 unless Compositionality UNLESSe PAR i

(P` p unless q) ∧ (Q` p unless q) = (P8Q` p unless q)

Theorem 4.5.2 ensures Compositionality ENSURESe PAR

(P` p ensures q) ∧ (Q` p unless q)
P8Q` p ensures q

Theorem 4.5.3 FP Compositionality is SKIP PAR

(P` FP.p) ∧ (Q` FP.p)
P8Q` FP.p

Figure 4.4: Some properties of parallel compositions.
J

Figure 4.3 lists some properties of unless , � , and FP that are needed somewhere in
the rest of this thesis. For more properties the reader is referred to [CM89, Pra95].
As a notational convention: when it is clear which program P is meant, it is omitted
from a formula. For example, p unless q is written instead of P` p unless q. For laws:

P :
. . . (p unless q) . . .

r unless s
abbreviates

. . . (P` p unless q) . . .
P` r unless s

Moreover, we want to remind the reader of the notational conventions for state-lifted
operators stated in Table 3.227.

As indicated before, the ensures relation describes single-action progress and
therefore does not satisfy transitivity and disjunctivity properties. Consequently, it is
not adequate for specifying general progress. To specify general progress properties in
UNITY, the leads-to operator is used. It is denoted by 7→, and defined as the smallest
transitive and disjunctive closure of ensures . Intuitively, P` p 7→ q implies that if
p holds during an execution of P , then eventually q will hold. The precise definition
and properties of 7→ can be found in [CM89]. They are not given here, since in this
thesis Prasetya’s [Pra95] variant of 7→ will be used to specify progress properties.

4.5 Prasetya’s � operator

In [Pra95], Prasetya examines compositionality laws of UNITY’s general progress op-
erator ( 7→) with respect to parallel composition 8. Although fairly strong results in
this area have been obtained by Singh [Sin89a], Prasetya shows that UNITY logic
is not adequate to prove even stronger results on the parallel composition of write-
disjoint programs (e.g. the Transparency Law). Subsequently, he introduces a new
general progress operator with which these stronger results are provable. The opera-
tor, called reach, is denoted by �, and is – after lifting it to work on state predicates
of type State→Val – defined (without overloading) as follows:
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Definition 4.5.4 Reach Operator REACHe

(λp, q. J P` p � q) is defined as the smallest relation R satisfying:

(i).
p C wP ∧ q C wP ∧ (P`�J) ∧ (P` J ∧∗ p ensures q)

R.p.q

(ii).
R.p.q ∧R.q.r

R.p.r

(iii).
(∀i : evalb.(W.i) : R.(pi).q)

R.(∀∗i : W.i : pi).q

where W ∈ α→Val characterises a non-empty set.
J

Intuitively, J P ` p � q means that J is a stable predicate in P and that P can
progress from J ∧ p to q. Note that:

• p � q describes progress made through the writable part of program P (viz.
p and q are confined by the write variables of P ). However, since a program
can only make progress on its write variables, this should not be a hindrance
[Pra95].

• the predicate J can be used to specify the non-writable part of the program,
e.g. assumptions on the environment in which the program operates.

Prasetya proves that this alternative progress relation satisfies the Transparency law,
and moreover, that it also satisfies the compositionality laws given by Singh [Sin89a].
Since we do not need these laws directly in this thesis, the reader is referred to [Pra95]
for their exact characterisations. Some corollaries of these compositionality results,
that we do need in this thesis, are stated in Figure 4.6. Other properties of � are
listed in Figure 4.5. As a notational convention: when it is clear which program P , or
which stable predicate J are meant, these are omitted from a formula. For example,

P, J :
. . . (p unless q) . . .

r � s
abbreviates

. . . (P` p unless q) . . .
J P` r � s

Again we want to remind the reader of the notational conventions for state-lifted op-
erators stated in Table 3.227. Moreover, for the confinement constraints we introduce
the following convention:

p, q CwP abbreviates p C wP ∧ q C wP

Properties 4.5.747 through 4.5.1347 have corresponding laws for 7→ [CM89]. Prop-
erty 4.5.547 is specific for � and formally states that progress is made through the
writable part of the program under the stability of J . Property 4.5.647 states that the
Substitution Law can be formally derived for the � operator. In [CM89], the Substi-
tution Law for 7→ is stated as an axiom. This axiom was a source of anxiety because
it was found that it makes the logic inconsistent. However, Sanders [San91] proposed
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Theorem 4.5.5 � Stable Background and Confinement REACHe IMP STABLE

REACHe IMP CONF

P :
J ` p � q

�J ∧ p, q C wP

Theorem 4.5.6 � Substitution REACHe SUBST

P, J :
p, s C wP ∧ [J ∧ p ⇒ q] ∧ (q � r) ∧ [J ∧ r ⇒ s]

p � s

Theorem 4.5.7 � Introduction REACHe ENS LIFT,REACHe IMP LIFT

P, J :
p, q C wP ∧ (�J) ∧ ([J ∧ p ⇒ q] ∨ (J ∧ p ensures q))

p � q

Theorem 4.5.8 � Reflexivity REACHe REFL

P, J :
p C wP ∧ (�J)

p � p

Theorem 4.5.9 � Transitivity REACHe TRANS

P, J :
(p � q) ∧ (q � r)

p � r

Theorem 4.5.10 � Case distinction REACHe DISJ CASES

P, J :
(p ∧ ¬r � q) ∧ (p ∧ r � q)

p � q

Theorem 4.5.11 � Cancellation REACHe CANCEL

P, J :
q C wP ∧ (p � q ∨ r) ∧ (r � s)

p � q ∨ s

Theorem 4.5.12 � Progress Safety Progress (PSP) REACHe PSP

P, J :
r, s C wP ∧ (r ∧ J unless s) ∧ (p � q)

p ∧ r � (q ∧ r) ∨ s

Theorem 4.5.13 � Disjunction REACHe GEN DISJe

P, J :
(∀i : i ∈ W : p.i � q.i)

(∃i : i ∈ W : p.i) � (∃i : i ∈ W : q.i)
if W 6= ∅

Figure 4.5: Properties of �.
J
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Theorem 4.5.14 REACHe PAR SKIPe IMP REACHe

J P1` p� q ∧ P2` FP.(¬q) ∧ P2`�J
J P18P2` p� q

Theorem 4.5.15 REACHe WHILE r PAR SKIPe r IMP REACHe PAR

J P1` p� q ∧ P2` FP.r ∧ P2`�J ∧ P1` r unless q ∧ (p ⇒ r) ∧ (r C w(P1 8 P2))
J P18P2` p� q

Theorem 4.5.16 REACHe and STABLEe r PAR SKIPe r IMP REACHe PAR

J P2` p� q ∧ P1` FP.r ∧ P2`�r ∧ P1`�J ∧ P1`�r ∧ (p ⇒ r) ∧ (r C w(P1 8 P2))
J P18P2` p� q

Figure 4.6: Some compositionality properties of �.
J

an extension of the 7→ operator for which the Substitution Law can be derived, and
hence guaranteed consistency of the logic. With respect to deriving the Substitution
Law, Prasetya’s and Sanders’ progress operator are quite similar, although, being the
primary reason for its introduction, Prasetya’s operator is more suitable to derive
compositionality results [Pra95].

We end this section by presenting the well-founded-induction principle for �,
which (for 7→ in [CM89]) is a standard technique to prove general progress properties.

Theorem 4.5.17 � Bounded Progress REACHe WF INDUCT

For a well-founded relation ≺ over some set W , and metric M ∈ State→W :

P, J :
q C wP ∧ (∀m ∈ W : p ∧ (M = m) � (p ∧ (M ≺ m)) ∨ q)

p � q

note the overloading: (M = m) and (M ≺ m) denote (λs. (M.s) eq m)
and (λs. (M.s) ≺ m) respectively.

J

Intuitively this principle states the following. Suppose we have a well-founded relation
≺ over a set W , i.e. it is not possible to construct an infinite sequence of ever
decreasing values in W , then a program P can, from p, either

• make progress to q, or

• maintain p while decreasing the value of m with respect to a ≺

Consequently, since ≺ is well-founded, it is not possible to decrease m forever, and
hence eventually q will be established.
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Theorem 4.5.18  Disjunction CONe GEN DISJ

P, J :
(∀i : i ∈ W : p.i   q.i)

(∃i : i ∈ W : p.i)   (∃i : i ∈ W : q.i)
if W 6= ∅

Theorem 4.5.19  Conjunction CONe CONJ

For all non-empty and finite sets W :

P, J :
(∀i : i ∈ W : p.i   q.i)

(∀i : i ∈ W : p.i)   (∀i : i ∈ W : q.i)

Theorem 4.5.20  Bounded Progress CONe WF INDUCT

For a well-founded relation ≺ over some set A, and metric M ∈ State→A:

P, J :
(q   q) ∧ (∀m ∈ A : p ∧ (M = m)   (p ∧ (M ≺ m)) ∨ q)

p   q

Theorem 4.5.21  Iteration Iterate thm CONe

For arbitrary sets W ,

P, J, L :

(�((∀x : x ∈ L : Q.x) ∧ J)) ∧ (∀x : x ∈ L : Q.x C wP )
L ⊆ W ⇒ ((f.L) ⊆ W ∧ (∀x : x ∈ L : Q.x)   (∀x : x ∈ f.L : Q.x))
∀n L : L ⊆ W ⇒ (∀x : x ∈ L : Q.x)   (∀x : x ∈ iterate.n.f.L : Q.x)

Figure 4.7: Properties of  .
J

4.6 Self-stabilisation and Prasetya’s   operator

The notion of self-stabilisation was first introduced by Dijkstra in [Dij74]. Roughly
speaking, a self-stabilising program is a program which is capable of recovering from
arbitrary transient failures of the environment in which the program is executing.
Obviously such programs are very useful, although the requirement to allow arbi-
trary failures may be too strong. A more restricted form of self-stabilisation, called
convergence, allows a program to recover only from certain failures. In [Pra95], a
convergence operator is defined in terms of �. The operator is denoted by   and
defined as follows:

Definition 4.6.1 Convergence CONe

J P` p   q , q C wP ∧ (∃q′ :: (J P` p � q′ ∧ q) ∧ (P`�(J ∧ q′ ∧ q)))
J

A program P converges from p to q under the stability of J (i.e. J P ` p   q), if,
given that P`�J , the program P started in p will eventually find itself in a situation
where q holds and will remain to hold. Intuitively, a program P for which this holds
can recover from failures which preserve the validity of p and the stability of J . The
necessity of the predicate q′ in the definition of   is explained in [Pra95] as follows.
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Theorem 4.6.2 Convergence Implies Progress CONe IMP REACHe

P, J :
p   q
p � q

Theorem 4.6.3  Substitution CONe SUBST

P, J :
p, s C wP ∧ [J ∧ p ⇒ q] ∧ (q   r) ∧ [J ∧ r ⇒ s]

p   s

Theorem 4.6.4  Introduction CONe ENSURES LIFT, CONe IMP LIFT

P, J :
p, q C wP ∧ (�J) ∧ (�(J ∧ q)) ∧ ([J ∧ p ⇒ q] ∨ (p ∧ J ensures q))

p   q

Theorem 4.6.5  Reflexivity CONe REFL

P, J :
p C wP ∧ (�J) ∧ (�(J ∧ p))

p   p

Theorem 4.6.6  Transitivity CONe TRANS

P, J :
(p   q) ∧ (q   r)

p   r

Theorem 4.6.7  Case distinction CONe DISJ CASES

P, J :
(p ∧ ¬r   q) ∧ (p ∧ r   q)

p   q

Theorem 4.6.8 Accumulation CON SPIRAL

P, J :
(p   q) ∧ (q   r)

p   q ∧ r

Theorem 4.6.9  Stable Strengthening CONe STAB MONO GEN

P :
q C wP ∧ (�(J1 ∧ J2)) ∧ J1 ` p   q

(J1 ∧ J2) ` p   q

Theorem 4.6.10  Stable Shift CONe STABLE SHIFT

P :
p′ C wP ∧ (�J) ∧ (J ∧ p′ ` p   q)

J ` p′ ∧ p   q

Figure 4.8: More properties of  .
J
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Suppose that a program P can progress from p to q. However, P may not remain
in q immediately after the first time q holds. Instead, P may need several iterations
before it finally remains within q. This is encoded by requiring that P converges to
a predicate stronger than q. This predicate does not need to be fully described. It
suffices to know that it implies q. As a consequence, Prasetya’s notion of convergence
is what by Burns, Gouda, and Miller called pseudo-stabilisation [BGM90].

Figures 4.8 and 4.7 list properties of the convergence operator. Most properties
are analogous to those of �. There is, however, one property that is satisfied by  
but not by � nor 7→, viz. Conjunctivity. Prasetya [Pra95] shows that, exploiting
the conjunctivity of convergence, additional compositionality results for write disjoint
programs can be proved, and a stronger induction principle than bounded progress
(named round decomposition) can be formulated for  . Again, since we do not need
these theorems directly, the reader is referred to [Pra95] for their exact characterisa-
tion.

4.7 Refining UNITY programs by superposition

In UNITY, refining programs by superposition is viewed as follows [CM89, pages
163-167]. Given a program P called the underlying program, variables of which are
called underlying variables. It is required to transform the underlying program such
that all its properties are preserved. The transformation, called superposition, on pro-
gram P consists of introducing new variables called superposed variables, and then
transforming the underlying program P such that the assignments of the underlying
variables remain unaffected, though assignments to superposed variables may use the
values of underlying variables. Consequently, superposition is a program transforma-
tion that adds new functionality to an algorithm in the form of additional variables
and assignments to these variables.

It is recognised in [CM89] that the lack of appropriate syntactic mechanisms limits
the algebraic treatment of superposition. Consequently, the description of superpo-
sition refinement in [CM89] is rather informal. In this thesis, however, we have a
deep embedding of actions. That is we have defined the abstract syntax of actions
by a recursive data type, and their semantics as a recursive function on this type.
As a consequence, we are able to obtain and reason about various components of ac-
tions (e.g. guards, assignment variables, etcetera) from the universe ACTION, and, to
some extent, we are able to compare actions from the universe ACTION (i.e. we have
a notion of equality of actions). Consequently, we have more appropriate syntactic
mechanisms which enable us to give a less informal treatment of superposition.

Within the UNITY framework [CM89] two rules of superposition are distinguished:
restricted union superposition, and augmentation superposition.

In [CM89], the restricted union superposition rule states that an action A may be
added to an underlying program provided that A does not assign to the underlying
variables. Here we split this into two parts:

• first, defining the actual transformation of the program;
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Let P ∈ Uprog, A ∈ ACTION, and p, q, J ∈ Expr.

Theorem 4.7.1 preservation of unless and ensures RU Superpose PRESERVES UNLESS

RU Superpose PRESERVES ENSURES
p C wP ∧ q C wP ∧ wP 8 A

( P` p unless q ⇒ RU S.P.A.iA ` p unless q)
( P` p ensures q ⇒ RU S.P.A.iA ` p ensures q)

Theorem 4.7.2 preservation of � and  RU Superpose PRESERVES REACH

RU Superpose PRESERVES CON
J C wP ∧ wP 8 A

(J P` p � q ⇒ J RU S.P.A.iA ` p � q)
(J P` p   q ⇒ J RU S.P.A.iA ` p   q)

Figure 4.9: Restricted Union Superposition preserves properties
J

• second, proving under which conditions this transformation preserves the prop-
erties of the underlying program.

Let A be an action from the universe ACTION, and let iA be a state-predicate describing
the initial values of the superposed variables, then a program P can be refined by
restricted union superposition using the transformation formally defined by:

Definition 4.7.5 Restricted union superposition RU superpose DEF

Let A ∈ ACTION, iA ∈ Expr, and P ∈ Uprog.

RU S.P.A.iA = P 8 ({A}, iA, l2s.(assign vars.A), l2s.(assign vars.A))
J

Theorems stating that properties are preserved under restricted union superposition
are listed in Figure 4.9. Note that instead of requiring that the superposed action
A does not write to the underlying variables, it is sufficient to require that the write
variables of the underlying program are ignored by the action A.

In [CM89], the augmentation superposition rule states that an assignment As that
does not assign to the underlying variables can be augmented to any assignment or
assignment-part of actions of the underlying program. Again, we first define the
actual transformation on the program, and second, prove theorems stating when
properties are preserved. Let As be an assignment from the universe ACTION, and let
iA be a state-predicate describing the initial values of the superposed variables, then
a program P can be refined by augmentation superposition using the transformation
rule formally defined by:
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Let As ∈ ACTION, iA ∈ Expr, P ∈ Uprog, and ACs ⊆ ACTION.

Theorem 4.7.3 preservation of unless and ensures AUG Superpose PRESERVES UNLESS

AUG Superpose PRESERVES ENSURES

p C wP ∧ q C wP ∧ wP 8 As ∧ is assign.As
WF action.As ∧ ∀Ac : Ac ∈ ACs : WF action.Ac

( P` p unless q ⇒ AUG S.P.ACs.As.iA ` p unless q)
( P` p ensures q ⇒ AUG S.P.ACs.As.iA ` p ensures q)

Theorem 4.7.4 preservation of � and  AUG Superpose PRESERVES REACH

AUG Superpose PRESERVES CON

J C wP ∧ wP 8 A ∧ is assign.As
WF action.As ∧ ∀Ac : Ac ∈ ACs : WF action.Ac
(J P` p � q ⇒ J AUG S.P.ACs.As.iA ` p � q)
(J P` p   q ⇒ J AUG S.P.ACs.As.iA ` p   q)

Figure 4.10: Augmentation Superposition preserves properties
J

Definition 4.7.6 Augmentation superposition AUG superpose DEF

Let As ∈ ACTION, iA ∈ Expr, P ∈ Uprog, and ACs ⊆ ACTION.

AUG S.P.ACs.As.iA = ({Ac | Ac ∈ aP ∧Ac 6∈ ACs}
∪

{augment.Ac.As | Ac ∈ aP ∧Ac ∈ ACs},
iniP ∧∗ iA,
rP ∪ l2s.(assign vars.As),
wP ∪ l2s.(assign vars.As))

J

Theorems stating that properties are preserved under augmentation superposition are
listed in Figure 4.10. Note again that instead of requiring that the the assignment
As does not write to the underlying variables, it is sufficient to require that the write
variables of the underlying program are ignored by As.

4.8 Concluding remarks

In this chapter we have briefly presented UNITY and Prasetya’s extensions. As
already indicated we have concentrated on those aspects that are needed in the rest
of this thesis, and used the version of UNITY as described in [CM89] and extensions
as described in [Pra95]. Since the publication of [CM89] several improvements have
been made in the theory, some of which are reflected in the Notes on UNITY which
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can be found at:

http://www.cs.utexas.edu/users/psp/notesunity.html

Moreover, a new version of UNITY has been proposed by J. Misra. In “New UNITY”,
a new operator co is suggested for expressing safety properties, replacing unless. A
notion of transient predicates form the basis for the progress properties, replacing
ensures as the basic operator. We do not consider the new version in this thesis. For
more information the reader is referred to [Mis94].



Chapter 5

Embedding UNITY in HOL

A s already indicated, this thesis uses and builds upon Prasetya’s [Pra95] UNITY
embedding in HOL. However, as motivated in Chapter 3, the underlying pro-
gramming theory used in this thesis differs slightly from Prasetya’s [Pra95].

First of all, in order to enable general properties of the UNITY programming language
(e.g. actions) itself to be proved, the embedding of actions used in this thesis is deeper
than that of Prasetya. Second, the universe of values, the elements of which can be
assigned to variables, is defined by the recursive data type Val (3.2.121), instead of by
some polymorphic type. Therefore, since state-predicates are a special kind of state-
expressions and hence can be used in the right hand side of assignments to variables,
the type of state-predicates in not longer State→bool but becomes State→Val.

This chapter describes the theories built on top of Prasetya’s embedding that cope
with these slightly different program-theoretic foundations. Section 5.1 presents the
theory hierarchy of the resulting embedding, and briefly describes the contents of each
theory. Section 5.2 describes the extension of HOL with the type Val (i.e. the universe
of values), and Section 5.3 explains how functions and operations working on values
of type Val can be defined in HOL. Section 5.4 through 5.6 respectively describe the
modelling of state-functions, actions and UNITY programs, and present some tactics
that provide proof-support for proving properties like confinement on state-functions,
invisibility of variables to actions, and well-formedness of UNITY programs. Section
5.7, finally, outlines how the UNITY operators in Prasetya’s embedding are lifted to
handle the new type of state-predicates, and the deeper representation of actions.

5.1 The theory hierarchy

Figure 5.1 shows the theory hierarchy of the UNITY embedding used in this thesis.

WP UNITY is the theory of which the ancestry consists of Wishnu Prasetya’s UNITY
embedding [Pra95] (i.e. state-predicates have type State→bool, and actions
are shallowly embedded.)

pvt contains the theorems that constitute an abstract axiomatisation, an induction
principle, an “all constructors are distinct” theorem, and a cases theorem for

55
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WP UNITY

pvt

pvt ops

expressions

actions syntaxexpr conf actions semantics

compile actions

UNITY programs actions transformations

LIFT TFIL

TDCe UNLESSe

FP

ENSURESe

LEADSTOe

REACHe

CONe

superposition

refinements

Figure 5.1: Theory hierarchy
J

the recursive data type Val. The theory contains an axiom, the justification of
which is proved with HOL, and described in Appendix B.

pvt ops consists of the intended type checking functions, the destructor functions, and
the Val-lifted standard operations on values of type Val that were discussed in
Section 3.2. (see Section 5.3)

expressions constitutes the theory on State-lifting the Val-lifted operations from the-
ory pvt ops conform to Section 3.3. (see Section 5.4)

expr conf Contains theorems 3.3.1029 through 3.3.1629. Moreover, proof-support for
proving confinement properties of certain state-functions is available in this
theory. (see Section 5.4)
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actions syntax defines the data type that models the syntax of actions. Moreover, it
contains the definitions of the functions for reasoning about abstract actions
(i.e. definitions 3.4.130 through 3.4.731, 3.4.2035, and 3.4.2135). (see Section
5.5)

actions semantics formalises the behaviour and properties of executable actions con-
form Section 3.4.2.

compile actions defines how abstract actions are compiled into executable actions.
Moreover, this theory contains theorems stating the properties of actions as
delineated in Section 3.4.4, and proof-support for proving these properties of
certain actions. (see Section 5.5)

actions transformations embodies the definitions from Section 3.4.5.

UNITY programs characterises a compile function for a whole UNITY program, and
the notion of well-formedness of a UNITY program. (see Section 5.6)

superposition comprises the formalisation of superposition refinement from Section
4.7.

refinements contains definitions and theorems of a refinement concept that will be
described in Chapter 7.

LIFT TFIL holds definitions and theorems that facilitate the construction of the Expr-
lifted UNITY operators in terms of the ones from WP UNITY that work on
predicates of type State→bool. (see Section 5.7)

TDCe encloses theory about transitive, disjunctive closures of Expr-lifted operators.
(see Section 5.7)

The theories UNLESSe, FP, ENSURESe, LEADSTOe, REACHe, and CONe contain the
definitions and corresponding theorems of the UNITY operators � and unless , FP,
ensures , 7→, �, and   respectively, as they are presented in Chapter 4. (see Section
5.7)

5.2 The universe of values Val

As indicated in Chapter 3 (page 21), the multi-typed value space used in this thesis
is recursively defined by the following data type:

Val = NUM num
| BOOL bool
| REAL real
| STR string
| SET (Val)set
| LIST (Val)list
| TREE (Val)ltree



58 Chapter 5 Embedding UNITY in HOL

This type is not a concrete recursive data type, since the type operator that is defined
(i.e. Val) occurs inside the type expressions following the constructors SET, LIST,
and TREE. Consequently, this type cannot be added to HOL using the type definition
package (see Section 2.1), and has to be defined manually. Consistent to the way it
is done in Tom Melham’s type definition package [Mel89, GM93], the data type Val
has to be defined in HOL by deriving an abstract characterisation theorem for it. An
adequate and complete abstract characterisation theorem for any inductive type σ,
asserts the unique existence of a function g satisfying a recursion equation whose form
coincides with the primitive recursion scheme of this type σ (i.e. g is a paramorphism
[Mee90]). The abstract characterisation theorem of the data type Val is displayed in,
and added to HOL as, Axiom 5.3.159. Our conviction that this axiom can be proved
as a theorem in HOL and hence will not introduce any inconsistencies is based on the
justification presented in Appendix B. In this appendix, we describe how we have
manually added the following somewhat simpler recursive data type to HOL:

sVal = NUM num
| SET (Val)set
| LIST (Val)list
| TREE (Val)ltree

Although this data type is simpler, one can see that it contains the same problematic
aspects as Val (i.e. the constructors SET, LIST and TREE). From the verification
activities described in Appendix B, it becomes clear that manually adding the recur-
sive data type Val to HOL can be done analoguos to the way sVal is added. The
representation, abstract characterisation and proof obligations for the additional con-
structors BOOL, REAL and STRING, will be analogous to those of NUM. However, as
the number of constructors increases the proofs become long and tedious. Since all
formal proofs necessary to prove the abstract characterisation theorem of the subtype
sVal have been verified in HOL, we are convinced that the abstract characterisation
theorem of Val can also be proved. Therefore, we have added it to HOL as an axiom,
saving time that was spent on proving theorems of which we were not yet convinced
that they held.

5.3 Functions and operations on Val

The theory pvt ops contains the definitions of functions and operators on values of
type Val. In [Mee90] it is proved that all functions with source type σ are expressible
in the form of a paramorphism, i.e. are paramorphisms. Consequently, the intended
type checking functions from Definition 3.2.122, and the destructor functions from
Definition 3.2.222 are defined in HOL as paramorphisms on Val. For example, the
destructor function evaln is added to HOL as follows. First, using Hilbert’s choice
operator, evaln is defined as a function that has the desired behaviour:

Definition 5.3.2 evaln evaln DEF

evaln = εg.(∀n. (g.(NUM.n) = n))
J
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Axiom 5.3.1 Abstract characterisation of Val Val Axiom

∀fn fb fr fstr fset fl ft.
∃!para.

(∀n. para.(NUM.n) = (fn.n))
∧
(∀b. para.(BOOL.b) = (fb.b))
∧
(∀r. para.(REAL.r) = (fr.r))
∧
(∀str. para.(STR.str) = (fstr.str))
∧
(∀set. (FINITE.set) ⇒ (para.(SET.set) = (fset.(IMAGE.(split.para).set))))
∧
(∀l. para.(LIST.l) = fl.(map.(split.para).l))
∧
(∀t. para.(TREE.t) = ft.(map tree.(split.para).t))

J

Then we prove that the function evaln is a paramorphism:

Theorem 5.3.3 evaln is a paramorphism on Val evaln

∀n. evaln.(NUM.n) = n
J

proof of 5.3.3
For arbitrary n we have to prove that:

evaln.(NUM.n) = n
= (Definition 5.3.2)

(εg.(∀n. (g.(NUM.n) = n))).(NUM.n) = n
⇐(Hilbert’s ε (Theorem 2.2.113))

∃g. g.(NUM.n) = n
Specialising the conclusion of Axiom 5.3.159, by substituting (λn. n) for fn, we can
conclude the (unique) existence of a paramorphism para for which it holds that
para.(NUM.n) = n. Now the existentially quantified proof obligation from above
can be proved by reducing it with the witness para.
end proof of 5.3.3

Theorem 5.3.359 above is exactly the definition of evaln from Definition 3.2.222. Note
that is has been defined as a partial function by leaving the results of values not in the
correct domain unspecified. If one wants to define evaln such that “undefinedness” is
explicitly dealt with, first some constant of type Val has to be defined about which
nothing can be proved, e.g.

new_constant {Name = "udef", Ty = ==‘:Val‘==} ;
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Then evaln can be proved to be the paramorphism:

∀n. evaln.(NUM.n) = n
∀b. evaln.(BOOL.b) = udef
∀r. evaln.(REAL.r) = udef
∀str. evaln.(STR.str) = udef
∀set. (FINITE.set) ⇒ evaln.(SET.set) = udef
∀l. evaln.(LIST.l) = udef
∀t. evaln.(TREE.t) = udef

by extending the proof of 5.3.3 with specialising the universally quantified functions
fb, fr, fstr, fset, fl and ft in Axiom 5.3.159 with functions that given an argument of
the correct type return the value udef.

All intended type checking and destructor functions of Val are added to HOL
similarly. As already indicated in Chapter 3, all other functions and operators on
values of type Val (like e.g. eq, plus, And) are defined using the constructor and
destructor as in Table 3.123.

5.4 Variables, states, state-functions, and State-lifting

The universe of all variables is represented in HOL by a polymorphic type ’var. Con-
sequently, the universe of program-states is modelled by the type abbreviation

val State = ty_antiq (==‘:’var -> Val‘==);

For polymorphic type ’a, state-functions are modelled by:

val Func = ty_antiq (==‘:^State -> ’a‘==);

Since state-expressions and state-predicates are functions from State to Val, the uni-
verse of state-expressions is modelled in HOL by the type abbreviation

val Expr = ty_antiq (==‘:^State -> Val‘==);

A state-function is called a regular state-function when it consists exclusively of ap-
plications of the state-lifting functions VAR, CONST, UN APPLY, BI APPLY, ∀∗, and
∃∗. For example:

BI_APPLY $gte (VAR x) (CONST (NUM 5))
is a regular state-function, whereas:

(\s. (s x) gte (NUM 5)) is not.

A State-lifted unary or binary operator on state-functions is regularly defined when it
is defined using UN APPLY or BI APPLY respectively. All unary and binary operators
on state-functions in the theory expressions are defined regularly, and proved to have
the desired meaning as outlined in Figure 3.227. For example the regularly State-
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lifted definitions and corresponding theorems of equality, addition, greater than, and
the destructor function of Val-typed values with intended type bool are:

HOL-definition 5.4.1
EQ_DEF |- $EQ = BI_APPLY $eq
PLUS_DEF |- $!+! = BI_APPLY $plus
GT_DEF |- $!>! = BI_APPLY $gt
EVALB_DEF |- EVALB = UN_APPLY evalb

HOL-theorem 5.4.2
EQ_THM |- p EQ q = (\s. (p s) eq (q s))
PLUS_THM |- p !+! q = (\s. (p s) plus (q s))
GT_THM |- p !>! q = (\s. (p s) gt (q s))
EVALB_THM |- EVALB p = (\s. evalb (p s))

J

Note that, from the general types of UN APPLY and BI APPLY (see Definitions 3.3.425

and 3.3.525), we derive that the types of EQ, !+!, and !>! are the more general type
(σ→Val)→(σ→Val)→σ→Val, in which σ can be instantiated with State.

A State-lifted constant is regularly defined, when it is defined using CONST. For
example, the regularly State-lifted constants truth, zero, one and empty list are:

HOL-definition 5.4.3
eTT_DEF |- true = CONST (BOOL T)
ZERO_DEF |- ZERO = CONST (NUM 0)
ONE_DEF |- ONE = CONST (NUM 1)
EMPTY_LIST |- EMPTY_LIST = CONST (LIST [])

J

In this thesis, attempts have been made to construct state-functions as much as pos-
sible by applying regular state-functions and regularly defined State-lifted operators
to regularly defined State-lifted constants. The reason for this is that these state-
functions can be rewritten into regular state-functions, which is desirable since, as will
be shown below, the theory expr conf contains proof-support for proving confinement
properties of regular state-functions.

The theory expr conf contains the theorems 3.3.1029 till 3.3.1629 from Section
3.3, and uses these theorems to construct a tactic that generates simple verification
conditions for proving confinement of regular state-functions. The tactic is called
CONFINEMENT TAC, and applied to any goal of the form fCV , where f is a regular
state-function, and V is a set of variables, it REPEATedly (i.e. continues applying it
to all generated subgoals):

MATCH ACCEPT with theorem 3.3.1129, which when successful proves the current
subgoal

ORELSE
MATCH MP with theorems 3.3.1029 or 3.3.1229 till 3.3.1629, generating new subgoals

of the form:
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- f ′CV , where f ′ is a regular state-function that is simpler than f . These
subgoals are generated from the hypothesis of the theorem of which the con-
clusion successfully matches with the current subgoal. From the hypothesis of
3.3.1529 and the second conjunct of the hypothesis of 3.3.1629, subgoals of this
form are generated by pushing the universal quantification restriction into the
assumption.
- v ∈ V , generated from successful attempts to match the current subgoal with
the conclusion of theorem 3.3.1029

Consequently, the set of verification conditions which will be returned by this tactic
are of the form v ∈ V , for all free variables v occurring in f .

5.5 Actions

The data type that models the syntax of actions is a concrete recursive data type
that can be automatically added to HOL using Tom Melham’s [Mel89, GM93] data-
type package (see Chapter 2). Below the HOL definition for adding the recursive
type to HOL, and the definition of the universe ACTION of actions from the theory
actions syntax are displayed.

HOL-definition 5.5.1
val ACTION_Axiom
=
define_type
{name = "ACTION_Axiom",
type_spec =
‘ACTION_TYPE
= ASSIGN of ((’var)list) => (((’var->’a)->’a)list)
| GUARD of ((’var->’a)->’a) => ACTION_TYPE‘,

fixities = [Prefix,Prefix]
};

val ACTION = ty_antiq(==‘:(’var,Val)ACTION_TYPE‘==) ;
J

Definitions 3.4.130 till 3.4.731 can now be added to HOL using the SML function
new recursive definition. For example:

HOL-definition 5.5.2
val guard_of = new_recursive_definition
{name = "guard_of",
def = --‘(guard_of ((GUARD g a):^ACTION) = (g |/\| (guard_of a)))

/\
(guard_of ((ASSIGN lv le):^ACTION) = true)‘--,

fixity = Prefix,
rec_axiom = ACTION_Axiom};

J
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As an example, the following action (where x and y are variables of intended type
num, and z is a variable of intended type bool):

if (x = y) then x, y := (x + 1), 2 ‖ z := true (5.5.1)

is represented in HOL as:

GUARD ((VAR x) EQ (VAR y))
( (ASSIGN [x,y] [(VAR x) !+! ONE, TWO])
SIM
(ASSIGN [z] [true])

)

where TWO is the regularly State-lifted constant 2.
An action A ∈ ACTION is called regular, when the state-expressions in A’s guard

and in the right hand side of A’s assignment part are all rewritable into regular
state-expressions.

The theory compile actions contains the compile function (Definition 3.4.18), that
defines the semantics of abstract actions from ACTION in terms of the executable
actions (from theory actions semantics). Furthermore, the theory compile actions con-
tains the ignored-by and invisible-to properties of actions from Section 3.4.4, and two
tactics that generate simple verification conditions for proving the ignored-by and
invisible-to properties of regular actions from the universe ACTION. The tactics are
called IG BY TAC and INVI TAC respectively, and roughly described below.

The tactic IG BY TAC, when applied to a goal of the form V 8 A, where V is a
set of variables, and A ∈ ACTION is regular, shall REPEATedly:

MATCH MP with theorems 3.4.2336 or 3.4.2436, generating new subgoals.
ORELSE
REWRITE with the definition of WF Action (3.4.2135), and length (A.4.5217).

and consequently, returns a set of verification conditions of the form v 6∈ V , for all
variables v that will be assigned by action A when it is enabled.

The tactic INVI TAC, when applied to a goal of the form V 9 A, where V is a set
of variables, and A ∈ ACTION is regular, shall REPEATedly try to:

MATCH MP with theorems 3.4.2637 or 3.4.2737, generating new subgoals.
ORELSE
REWRITE with the definition of WF Action (3.4.2135), and length (A.4.5217).
ORELSE
CONFINEMENT TAC is applied

and consequently, returns a set of verification conditions of the form v 6∈ V , for all
variables v occurring free in action A.

5.6 UNITY programs

A set of actions from the universe ACTION, a set of variables, and finally the universe
Uprog of UNITY programs are modelled by the following type abbreviation:
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val ACTIONS = ty_antiq(==‘:^ACTION -> bool‘==);
val Var = ty_antiq(==‘:’var -> bool‘==);
val Uprog = ty_antiq(==‘:^ACTIONS # ^Expr # ^Var # ^Var‘==);

The destructors a, ini, r, and w used to access the components of an Uprog object
are called PROG, INIT, READ, and WRITE in HOL. Parallel composition of programs (8)
is called dPAR in HOL, and is defined using the pred set library [Mel92] as follows:

HOL-definition 5.6.1
|- !(Pr:^Uprog) (Qr:^Uprog).

Pr dPAR Qr = ((PROG Pr) UNION (PROG Qr),
(INIT Pr) |/\| (INIT Qr),
(READ Pr) UNION (READ Qr),
(WRITE Pr) UNION (WRITE Qr))

J

As a example, the following UNITY program:

prog Example
read {a, x, y}
write {x, y}
init true
assign

if a = 0 then x := 1 8 if a > 0 then x := 1 ‖ y := true

is defined in HOL as follows:

val Example = new_definition("Example",
(--‘Example (a:’var) (x:’var) (y:’var)
=
({GUARD ((VAR a) EQ ZERO) (ASSIGN [x] [ONE])
,
GUARD ((VAR a) !>! ZERO) ((ASSIGN [x] [ONE]) SIM (ASSIGN [y] [true]))
}

, true , ({\sf CHF} {x,y}), ({\sf CHF} {a,x,y})
)‘--));

Proving the well-formedness (definition 4.3.143) of a UNITY program taken from the
universe Uprog has now become much simpler because of the availability of the tactics
IG BY TAC and INVI TAC.

5.7 Program properties

Properties of UNITY programs are formalised using the operators of the UNITY
logic described in Chapter 4. In WP UNITY these operators work on state-predicates
of type State to bool, and formalise properties of UNITY programs that consist of
“shallowly embedded” actions. As already indicated, these operators from WP UNITY
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have to be lifted to handle state-predicates of type State→Val, and the deeper repre-
sentation of actions. This section explains how these operators, including all theorems
they satisfy, were lifted such that as much as possible results from WP UNITY could
be re-used.

First some results from WP UNITY are represented. The universe of state-predicates
in WP UNITY is defined by the type abbreviation:

val Pred = ty_antiq (==‘:^State -> bool‘==);

State-lifting the standard boolean operators for negation, conjunction, and disjunc-
tion is done as follows:

HOL-definition 5.7.1
pNOT_DEF |- !(p:^Pred). NOT p = (\s. ~(P s))
pAND_DEF |- !(p:^Pred) (q:^Pred). p AND q = (\s. (p s) /\ (q s))
pOR_DEF |- !(p:^Pred) (q:^Pred). p OR q = (\s. (p s) \/ (q s))

J

The universes of actions and UNITY programs in WP UNITY are modelled by the
type abbreviations:

val action = ty_antiq (==‘:^State -> ^State -> bool‘==);
val actions = ty_antiq (==‘:^action -> bool‘==);
val sUprog = ty_antiq(==‘:^actions # ^Pred # ^Var # ^Var‘==);

The basic relations of the UNITY logic in WP UNITY are defined as follows:

HOL-definition 5.7.2
|- !(p:^Pred) (a:^Action) (q:^Pred).

HOA(p,a,q) = (!s t. p s /\ A s t ==> q t)
|- !(Pr:^sUprog) (p:^Pred) (q:^Pred).

UNLESS Pr p q = (!a :: PROG Pr. HOA(p AND (NOT q),a,p OR q))
|- !(Pr:^sUprog) (p:^Pred) (q:^Pred).

ENSURES Pr p q = UNITY Pr /\
UNLESS Pr p q /\
(?a :: PROG Pr. HOA(p AND (NOT q),a,q))

J

Moreover, WP UNITY contains a myriad of theorems (including those from Chapter
4) about properties these relations satisfy.

Given this short (and incomplete) overview of the UNITY operators in WP UNITY,
we shall now lift these operators to work on state-predicates of type Expr, and UNITY
programs of type Uprog. First, to lift the UNITY operators, the following function is
defined in the theory LIFT TFIL:

HOL-definition 5.7.3
LIFT |- !(R:^Pred -> ^Pred -> bool).

LIFT R = (\p q. R (EVALB p) (EVALB q))
J
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Then the lifted versions of the UNITY operators are defined as follows:

HOL-definition 5.7.4
UNLESSe |- !(Pr:^Uprog)

UNLESSe Pr = LIFT (UNLESS (compile Pr))
ENSURESe |- !(Pr:^Uprog)

ENSURESe Pr = LIFT (ENSURES (compile Pr))
J

Finally, it is proved that these lifted definitions have the intended meaning, i.e. the
meaning as defined in Chapter 4. In order to prove this, we first have to define the
Expr-lifted version of Hoare triples that deals with the deeper embedding of actions:
(see Definition 3.5.138):

HOL-definition 5.7.5
HOAe |- !(p:^Expr) (A:^ACTION) (q:^Expr).

HOAe (p,A,q) = HOA(EVALB p, compile A, EVALB q)
J

Consequently, it can be proved that the definitions of UNLESSe and ENSURESe coincide
with Definitions 4.4.143 and 4.4.243 respectively:

HOL-theorem 5.7.6
UNLESSe_DEF |- !(Pr:^Uprog) (p:^Expr) (q:^Expr)

UNLESSe Pr p q
= (!A :: PROG Pr. HOAe(p |/\| (not q),A,p |\/| q))

ENSURESe_DEF |- !(Pr:^Uprog) (p:^Expr) (q:^Expr)
ENSURESe Pr p q
= dUNITY Pr /\
UNLESSe Pr p q /\
(?A :: PROG Pr. HOAe(p |/\| (not q),A,q))

J

Lifting the other UNITY operators like  , �, and   is done in the same way as
described above. In order to prove that the lifted   is indeed the least transitive
and disjunctive closure of the lifted version of ensures , some additional theory about
transitive and disjunctive closures of relations working on predicates of type Expr is
constructed in the theory TDCe.

Having lifted all the UNITY operators this way, it has become fairly easy to prove
all the theorems, presented in Chapter 4, that are satisfied by the lifted UNITY
operators. Because the lifted versions of the UNITY operators are defined in terms
of the old ones using the operator LIFT, most theorems are proved by rewriting and
matching with the corresponding theorems from WP UNITY.
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5.8 Other UNITY tools

The HOL-UNITY library that is part of the HOL package [GM93] is based on the
work of Andersen [And92b, And92a, APP93]. Like Prasetya’s embedding [Pra95]
it is a shallow embedding of UNITY. Unlike Prasetya’s embedding, programs are
simply defined as lists of actions, and no attention is payed to the acces modes (i.e.
read or write) – needed by Prasetya to reason about compositionality – of variables in
the program. Consequently, Prasetya’s UNITY extensions regarding compositionality
and convergence are not available in Andersen’s embedding.

UNITY has also been embedded in other theorem provers. Goldschlag [Gol90a,
Gol90b, Gol92] describes an embedding in the Boyer-Moore prover [BM88]. Brown
and Mery [BM93] report on an embedding of UNITY within the B-method [Abr96].
Chetali [Che95] specified UNITY in the Larch Prover [GHG+93]. Heyd and Crégut
[HC96] mechanised UNITY in Coq [CH88]. Paulson [Pau99] has embedded UNITY
in Isabelle [Pau94].

A model checker for UNITY has been developed Kaltenbach [Kal96]. Recently,
Thirioux [Thi98] has investigated the possibility of decision procedures for the auto-
matic verification of UNITY properties.
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Chapter 6

A methodology and a case
study

T his chapter describes an extension of the UNITY [CM89] methodology for
designing and/or mechanically verifying distributed algorithms. Although the
methodology is not new and may appear to many as totally obvious, we found

it important to describe it in this chapter for three reasons. First, we want to make it
clear to the reader what we mean by design and mechanical verification. In particular,
which activities are done, what exactly is verified and how. Second, we want to give
structure to subsequent chapters where this methodology is applied. Because, the
more complex the problem or algorithm, the more difficult it gets to stay focused
on what we are actually doing without serious distraction from difficult properties
of the problem or algorithm itself. The reader can use this chapter as some sort of
reference point that, when studying the verification activities in subsequent chapters,
may provide surveyability. Last, we want to be able to analyse which phases of the
methodology cost the most time, what is the reason for this, and what can be done
to make them more time-efficient.

To illustrate the use of this methodology, Section 6.2 describes a case study to
design and verify a converging distributed sorting algorithm. Since the aim of this
case study is to highlight the different steps of the methodology, the tackled problem
is relatively simple compared to real-life applications and the algorithms verified in
later chapters. Section 6.3, finally, reflects on the methodology and the time spent in
each separate step.

6.1 The methodology

The methodology described in this chapter consists of 5 phases. Depending on what
one wants to achieve, the phases have to be performed in a specific order. We distin-
guish two scenarios.

(a) One wants to develop (i.e. design and mechanically verify) a new algorithm
that solves a given problem P . For example, someone wants a reliable piece of
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problem P
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specification
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specification S
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the specification

algorithm A
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algorithm
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(a) (b)

Figure 6.1: (a): designing and mechanically verifying a new algorithm. (b): mechan-
ically verifying an existing algorithm.

J

software solving problem P . In this scenario, the steps can be done in the order
of Figure 6.1(a).

(b) One wants to mechanically verify that an existing algorithm A satisfies specifi-
cation S. For example, someone questions the claims that an existing algorithm
A satisfies a specification S. In this scenario, the steps can be done in the order
depicted in Figure 6.1(b).

Below the five phases are roughly described for the scenario developing a new algo-
rithm as well as the scenario verifying an existing algorithm.

Analyse the given problem P , or the existing algorithm A.
(a) Analysing problem P should result in an informal specification and a good

understanding of what the algorithm solving P is required to do. During
this phase, the designer must try to obtain a clear idea and a good feeling
of what his or her customer wants, needs and expects.

(b) Analysing an existing algorithm A should result in a good understanding
of its structure, functionality and strategy.

Most people know the feeling one has after completely solving a problem: after
solving it, the problem does not seem that difficult anymore as before. Obvi-
ously, this is not because the problem was not that difficult after all, but because
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one has gone deeply into the problem trying to understand it. It is this feeling
that one has to try to obtain after analysing the problem or algorithm, and not
only after having completely solved and verified the problem. Obviously this
is very difficult because it usually implies spending a lot of time not producing
any concrete output. It is our opinion, however, that, although not concrete,
the results achieved by obtaining this feeling at this stage are immense. The
pace of the rest of the phases is increased and the complexity is reduced.

UNITY specification
(a) Create a formal specification of what the new algorithm is to do (i.e. for-

mally specify which problem is to be solved). A specification must focus
on the task and not on its eventual implementation, in other words it must
specify what is to be done rather than how. By definition, a formal spec-
ification is a specification that is written in some specification language
or logic, that has a sound mathematical basis [Win90]. Writing a for-
mal specification is central in applying formal methods to the development
of programs. Formal specifications help to crystallise vague ideas, to re-
veal ambiguities and to expose incompleteness in the understanding of the
problem. There are many specification languages or logics, which differ
mostly in their choice of semantic domain. The best notation to use is the
one which relates most to the characteristics of the specific product being
developed and the background of the individuals involved. In this thesis
(following [Pra95]) the UNITY logic is chosen, for reasons already given in
previous chapters.

(b) If the given specification S is not yet a UNITY specification, transform it
into one.

When developing a new algorithm (i.e. scenario (a)), the two phases above are usually
not done independently. Often they are considered as a single phase resulting in a
formal specification of what the new algorithm is to do. However, in order to stress
the importance of spending time on analysing the problem, we have made a clear
distinction between these two phases.

Refine and decompose the formal specification. Much of program development
in the UNITY methodology [CM89] consists of refining specifications (i.e. adding
detail to them) and decomposing specifications (i.e. splitting them up into
smaller and preferably simpler specifications). Refinement and decomposition
commences by proposing a general solution strategy, by means of which the
algorithm solves the specified problem. Then the formal specification is refined
according to this proposed solution strategy. Finally, the refined specification
is decomposed into a set of smaller specifications. Decomposition of the spec-
ification must continue until the progress parts of the specification are solely
expressed in terms of ensures and unless . The reason for this is that ensures
and unless describe one-step progress and safety properties.
(a) When developing a new algorithm these one-step progress and safety prop-

erties are used to construct the actions of the algorithm.
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(b) When verifying an existing algorithm one-step progress and safety proper-
ties are the only ones that can be proved directly of the algorithm.

Sundry basic laws to refine and decompose formulae of the UNITY logic were
presented in Chapter 4.

Construct UNITY program representing the new algorithm solving P , or the
existing algorithm A.
(a) The idea in this step is that the new algorithm is written in such a way

that the actions satisfy the one-step progress and safety properties of the
refined and decomposed specification. This may be quite difficult, since
refinement and decomposition can result in a myriad specifications. Nev-
ertheless, refined specifications usually give a clear hint as to what kind
of actions should or should not occur in the program, since the proposed
solution strategy added some detail to how the specified problem could
be solved. Moreover, decomposition is often motivated by some ideas re-
lated to the implementation of the resulting program. For example, in
distributed environments designers may extensively exploit compositional-
ity laws, so that they will have a separate specification for each part of the
program instead of a large set of specifications for the complete program.

(b) Constructing a UNITY program representing an existing algorithm, is not
a straightforward activity. Obviously, many different UNITY programs
can be formulated that model the same algorithm. Finding the best one
with respect to readability and reducing proof-effort is not easy.

This ends the formal specification and construction of a UNITY program. The next
steps are concerned with the mechanical verification activities.

Represent the program in the HOL embedding of UNITY using the various
techniques discussed in Section 5.6. This also includes decisions on how to rep-
resent each component of the program. For example, if arrays are used in the
program then the representation of these arrays influences the ease with which
certain manipulations can be carried out.

Prove that the program is well-formed. To prove the well-formedness of a pro-
gram (i.e. prove that it satisfies the predicate dUnity), four conditions have to
be checked:
(i). the program should have at least one action.
(ii). the declared write variables should also be declared as read variables.
(iii). no variable not declared as a write variable is written by the program
(iv). no variable not declared as a read variable can influence the program.

Prove that the program satisfies the specification. First the specification must
be formalised in HOL. Second, a proof tree must be constructed according to
the refinement and decomposition method from the second step. Closing this
proof tree constitutes of proving that the program satisfies this refined and
decomposed specification
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Notice that designing and/or verifying an algorithm in practice never proceeds by
consecutively working through all steps. Program development and verification is by
no means a straight-forward one-pass process, but an iterative and non-linear process.
A developer cannot make claims to having determined all of the requirements just
because the third stage in the development process has been reached. Moreover, such
claims should be considered dubious even during post-implementation phases. More
than once, it will be inescapable that one has to revise previous steps, because one
got an additional idea, because one forgot something or simply because the customer
says so.

6.2 Case study: A distributed sorting algorithm

Our starting point is a decentralised communication network of processes in which:
every process can execute a local algorithm; every process has a unique label that is
used to identify its address; every process has a unique local variable that can store
a data value.

Processes are connected via bi-directional communication links. We assume syn-
chronous communication, in the sense that a process can only communicate with
exactly one other process at the same time.

Moreover, we have an unstable environment, in which enemies lurk to tamper with
the configuration of the network. In particular, we consider two kinds of enemies:
firstly, external agents that can change the data values of the processes, and secondly,
daemons that can deactivate and re-activate communication links.

We want to design a distributed program that sorts the network. That is a
program that does not alter the multi-set of the processes values, and (according to
some predefined orders, ≺p and ≺v, on the labels and the data values respectively)
will bring the network in a state in which, for any pair of processes, the order (≺p)
on the labels of these processes is reflected in the order (≺v) on the data values that
reside at these processes.

6.2.1 Analysis and formal specification

A decentralised communication network of processes is modelled by a tuple (P,neighs),
where

P is a finite set of the labels of the processes. Since every process has a unique
label this implies that the cardinality of P equals the number of processes in
the network. We assume P to have cardinality greater than 1, and thus do not
consider one process to be a communication network.

neighs is a function that given some process p ∈ P, gives the set of neighbours of
p. In other words, for p ∈ P, neighs.p constitutes the set of processes that are
connected to p by a bi-directional communication link. Obviously, the function
neighs has type1 P → P(P). Since in HOL all functions are total, we capture

1P indicates the power-set of
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this type by requiring that:

∀p ∈ P : neighs.p ⊆ P

Since we only consider communication between distinct processes, we shall not
allow self-loops, and thus neighs must also satisfy2:

∀p ∈ P, q ∈ neighs.p : p 6= q

Since communication links are bi-directional it also holds that:

∀p, q ∈ P : (q ∈ neighs.p) = (p ∈ neighs.q)

The set of (directed) communication links which are present in such a communication
network of processes (P, neighs), are formally defined as follows:

Definition 6.2.1 directed communication links in the network (P, neighs) links

links.P.neighs = {(p, q) | (p ∈ P) ∧ (q ∈ neighs.p)}
J

For the sake of clarity, in this section we shall be consistent in calling elements of
this set communication links. The communication links that are active (i.e. up)
and over which communication can actually take place, shall be called connections.
Note that the set of communication links is static, the set of connections is dynamic,
and the latter is always ⊆-ed in the first. The formal definition of a decentralised
communication network is given below:

Definition 6.2.2 decentralised communication network dNetwork DEF

dNetwork.P.neighs = FINITE.P ∧ card.P > 1
∧ ∀p ∈ P : neighs.p ⊆ P
∧ ∀p ∈ P, q ∈ neighs.p : p 6= q
∧ ∀p, q ∈ P : (q ∈ neighs.p) = (p ∈ neighs.q)

J

The distribution of the local variables that store the data value that resides at a
process, is given by a function D that maps a process-label to the local variable of
that process. Since every process has a unique variable, the following holds:

Definition 6.2.3 distinct Sort Vars

distinct Sort Vars.P.D = ∀i, j ∈ P : i 6= j ⇔ (D.i) 6= (D.j)
J

2Note that this condition can also be formalised by: ∀p ∈ P : p 6∈ neighs.p. We decided to use
the other variant because it turned out to be more suitable to prove certain proof obligations.
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The initial distribution of the data values in the network shall be denoted by the
function I, which maps a process-label to the data value that is initially stored in the
local variable of that process. As a result, in every state s the distribution of data
values is given by (s ◦D) , and if s0 is the initial state of the program, I = (s0 ◦D).

A network is defined to be sorted in some state s, when the following property is
satisfied:

Definition 6.2.4 Sorted Network Sorted DEF

Sorted.P.D.≺p.≺v.s = ∀i, j ∈ P : i ≺p j ⇒ ((s ◦D).i) ≺v ((s ◦D).j)
J

where ≺p and ≺v are orders on the process labels and the data values respectively.
Let us start with analysing which properties the order ≺p must satisfy under the

assumption that ≺v is a total order.
First, it must be anti-symmetric. Consider a network in which every process

contains a different data value, that is for all states s:

∀i, j ∈ P : (i 6= j) ⇒ ((s ◦D).i) 6= ((s ◦D).j)

Suppose that ≺p is not anti-symmetric, so there are processes i and j such that
(i 6= j)∧(i ≺p j)∧(j ≺p i) holds. From (i 6= j) we deduce that ((s◦D).i) 6= ((s◦D).j),
and from the anti-symmetric property of ≺v we derive that ((s ◦D).i) ≺v ((s ◦D).j)
and ((s ◦D).j) ≺v ((s ◦D).i) cannot both hold at the same time. Consequently, the
network cannot be sorted and thus ≺p must be anti-symmetric. Second, ≺p must be
transitive, for again consider a network in which every process contains a different
data value. Suppose that ≺p is not transitive, so there are i, j and k (i 6= j 6= k) such
that i ≺p j and j ≺p k and k ≺p i simultaneously hold. Again it can be concluded
from the anti-symmetry property of ≺v that it is impossible to sort the network.
Whether ≺p is reflexive, anti-reflexive, or neither makes no difference. Because if
i ≺p i holds, the right-hand side of (6.2.4), restricted to the case that i = j, is valid
since ≺v is reflexive; and if ¬(i ≺p i) holds then it is trivially valid. Finally, we assume
that ≺p is non-empty, since if ≺p= ∅ then (6.2.4) is a tautology and consequently
there is no use in constructing a sorting program.

Now we shall analyse the environment in which the program will operate. Thus far,
we have made two assumptions about the environment. First, we assumed an unstable
environment in which external agents can change the data values of the processes,
and daemons can tamper with the status (i.e. up or down) of the communication
links. Second, we assumed a network of processes, in which two processes can only
compare their data values if they have a connection (i.e. active communication link)
between them, and a process can only compare its value with one other value at
the same time (i.e. synchronous communication). Consequently, in order to sort
the network, the order ≺v has to remain a total order on the data values in the
network. Moreover, a sufficient number of data values have to be compared (i.e. a
sufficient number of connections must be present) and appropriate actions must be
taken according to the result of this comparison. Of course the way these values
are compared and which actions will be taken accordingly are matters of how the
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Figure 6.2: A network which cannot be sorted.
J

program will achieve what it is to do, and must not be part of the specification.
But conditions on the environment in which the program is required to operate are
matters of what the program is to do, viz. under what circumstances it must fulfil its
requirements. Although at this stage, we may not make any assumptions whatsoever
on how the program will achieve the requested results, nevertheless we have to take full
account of the limitations the environment imposes upon the possible implementations
of the program, by specifying and if necessary strengthening the properties of this
environment. It is obvious that, in this case, we have to curtail the set of possible
failures that can change the environment, and settle for convergence instead of self-
stabilisation. First of all, we can only allow external agents that change data values
in such a way that ≺v stays a total order on the data values. Second, we cannot allow
arbitrary communication links to fail. Consider for example the network in Figure
6.2, where the labels (written above the processes) are characters, and the data values
(written inside the processes) are numbers. As a result of an environmental failure,
the communication link between processes b and c is down. Let ≺p and ≺v be the
lexicographic order on characters and the less-than-or-equal (≤) order on numbers
respectively. There exists no implementation which does not alter the multi-set of the
processes’ values and can sort this network, since:

• the values of processes a, c, d and e are already sorted according to Definition
(6.2.4), so these processes shall not undertake any action3

• the same holds for the processes a and b
• process b cannot compare its value with any of processes c, d and e, so nothing

will be done by process b either.
Consequently, we must formalise a condition which states when there are still enough
connections left for any implementation to sort the network. This condition then
imposes a restriction on the set of failures from which the convergent program can
recover. Moreover, we need to make the status (i.e. up or down) of the available
communication links dependent of the state such that the presence of connections
becomes dynamic. To establish the latter, we introduce variables aC.i.j for each

3Note that by concluding that no action will be undertaken we assume local convergence.
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(i, j) ∈ links.P.neighs of type boolean, and model link failures as follows:

s.(aC.i.j) = true, if link (i, j) is up (i.e. an active Connection) in state s
s.(aC.i.j) = false, if link (i, j) is down in state s

The state-predicate stating that (i, j) is an active connection is characterised by:

Definition 6.2.5 active connection AC DEF

AC.i.j.s = i ∈ neighs.j ∧ s.(aC.i.j)
J

For all states s we define the set of active connections as follows:

Definition 6.2.6 set of active connections ACs DEF

ACs.s = {(i, j) | AC.i.j.s}
J

A minimal and sufficient condition on the connections must imply that if the network
is not yet sorted, then there must always be processes which recognise that their
values are not sorted; in other words, among the pairs of connected processes whose
labels are ordered by ≺p, there must at least be one pair whose values are out-of-order.
For, if this condition is not satisfied, it will always be possible to create an example
as above in which the network cannot be sorted. Before this condition is formalised,
first the definition of a Wrong Pair of processes is given.

Definition 6.2.7 Wrong Pair of processes WP DEF

WP.i.j.s = (i ≺p j) ∧ ¬(((s ◦D).i) ≺v ((s ◦D).j))
J

Obviously,

Theorem 6.2.8 NOT Sorted IMP EXISTS WP

(¬Sorted.P.D.≺p.≺v.s) ⇔ ∃i j : i ∈ P ∧ j ∈ P : WP.i.j.s
J

Thus the condition (from now on denoted by SufficientConnections) which we are
looking for must satisfy in state s

SufficientConnections.ACs.≺p.s ∧ ¬Sorted.P.D.≺p.≺v.s
∃u v : u ∈ P ∧ v ∈ P : WP.u.v.s ∧ AC.u.v.s

(6.2.1)

We have come up with a nice formalisation of the condition which uses the transitive
closure of the connections which are ordered by ≺p. First, we define the notion of
the transitive closure of a relation R on a set A (denoted by Rtr) by induction as in
[RW92].
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Definition 6.2.9 Transitive closure tr DEF,tr n DEF

If N = card.A, then Rtr = RN , where:

(x, y) ∈ R0 = (x, y) ∈ R
(x, y) ∈ Rn+1 = (x, y) ∈ Rn ∨ (∃z : z ∈ A : (x, z) ∈ Rn ∧ (z, y) ∈ Rn)

J

Now, we state that the following definition of SufficientConnections.ACs.≺p satisfies
(6.2.1), the proof of which shall be given below.

Definition 6.2.10 Sufficient connections in the network Sufficient Connections

SufficientConnections.ACs.≺p.s = (≺p⊆ (≺p ∩ ACs.s))tr)
J

In order to verify that Definition 6.2.10 of SufficientConnections.ACs. ≺p satisfies
(6.2.1), assume that for some state s (≺p⊆ (≺p ∩ ACs.s)tr) and ¬Sorted.P.D.≺p.≺v.s
hold.

From (6.2.8) and the second assumption we can deduce that there exist a i, j ∈ P,
such that WP.i.j.s (and thus i ≺p j). Consequently, the first assumption tells us that
(i, j) ∈ (≺p ∩ ACs.s)tr, i.e. (i, j) ∈ (≺p ∩ ACs.s)N , where N = card.P. We now prove
that for all processes i, j ∈ P:

WP.i.j.s ∧ (i, j) ∈ (≺p ∩ ACs.s)N

∃u v : u ∈ P ∧ v ∈ P : WP.u.v.s ∧ AC.u.v.s

by induction on N .

Induction Base: case 1

Assume WP.i.j.s and (i, j) ∈ (≺p ∩ ACs.s)1. Rewriting the second assumption
gives us (i, j) ∈ (≺p ∩ ACs.s), i.e. (i, j) ∈ ACs.s, which together with the first
assumption and Definition 6.2.6 establishes this case.

Induction Hypothesis: for all M < N and for all processes i, j ∈ P:

WP.i.j.s ∧ (i, j) ∈ (≺p ∩ ACs.s)M

∃u v : u ∈ P ∧ v ∈ P : WP.u.v.s ∧ AC.u.v.s

Induction Step: case N

Assume WP.i.j.s and (i, j) ∈ (≺p ∩(ACs.s))N . Rewriting the second assumption
with 6.2.9 gives us two cases:
• (i, j) ∈ (≺p ∩ (ACs.s))N−1, this case is trivially proven by the Induction

Hypothesis.



6.2 Case study: A distributed sorting algorithm 79

• ∃k : k ∈ P : (i, k) ∈ (≺p ∩ (ACs.s))N−1 ∧ (k, j) ∈ (≺p ∩ (ACs.s))N−1,
since WP.i.j.s, and thus ¬((s ◦D).i) ≺v ((s ◦D).j), we can conclude, due
to the transitivity of ≺v, that either ¬((s ◦D).i) ≺v ((s ◦D).k) holds, or
¬((s◦D).k) ≺v ((s◦D).j). Again the Induction Hypothesis proves this
case.

�

Now, we are almost ready to construct the formal specification of what the program is
to do. We have defined what the program must establish, i.e. sort a particular kind of
network of processes, and we have defined under which conditions it must achieve this,
i.e. there is a total order on the processes data values; there is an anti-symmetric and
transitive relation on the processes labels; and there is a restriction upon the failures
that may occur (6.2.10). There is, however, one, important but obvious, thing that
must be embodied in the specification of the sorting program. During the activity of
sorting the network, we want the distribution of the values among the processes to
remain a permutation of the initial distribution (i.e. the one with which the program
started). If we do not require this, a simple program which just assigns the same
value to all processes would achieve, by reflexivity of ≺v, a sorted network (according
to Definition 6.2.4). Obviously, this is not what we want. Consequently, we need a
definition of permutation:

Definition 6.2.11 Permutation PERM DEF

Permutation.P.D.I.s = ∃f :: (bijection.f.P.P)
∧ (∀i ∈ P : ((s ◦D).i) = (I.(f.i)))

J

The formal specification4 of the program in terms of the convergence operator can
be found in Figure 6.3. Note that I is not a program variable, but a proof variable,
i.e. introduced to reason about the program (namely the permutation-part). Con-
sequently, (D = I) is not an initial program condition, but an initial specification
condition, which, intuitively, makes the specification state that:

if the program is started in some state s and I is a snapshot of the distribution of data
values in that state s, and SufficientConnections.ACs.≺p, Permutation.P.D.I, and
Total.≺v.D.P are stable in the program,

then the program will eventually find itself in a situation (i.e. a state) in which the
network is sorted.

6.2.2 Results of analysing

To corroborate the conjectures made in Section 6.1 concerning the importance of
analysing the problem, this subsection shall enlarge on which results, besides a formal

4Be aware of the overloading. (D = I) means (λs.∀i ∈ P : (s ◦ D).i = I.i), ∧ works on state-
predicates, and Total.≺v.D.P is a state-predicate that given some state s, indicates whether ≺v is a
total order on {(s ◦D)i | i ∈ P}.
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Specification 6.2.12

dNetwork.P.neighs ∧ distinct Sort Vars.P.D ∧ (≺p 6= ∅)
AntiSymmetric.≺p.P ∧ Transitive.≺p.P

( Sort` �Total.≺v.D.P)∧
( Sort` �SufficientConnections.ACs.≺p)∧
Permutation.P.D.I ∧ SufficientConnections.ACs.≺p ∧Total.≺v.D.P

Sort` (D = I)   Sorted.P.D.≺p.≺v

Figure 6.3: Formal specification.
J

specification, have been achieved in the previous subsection.
First, thorough analysis of the unstable environment has enabled us to crystallise

two different techniques we have used to deal with our enemies.
External agents that tamper with data values are made latent by using the conver-

gence operator and the specification condition (D = I). For, if, during the execution
of the program, some agent tampers with data values (in such a way that ≺v is still a
total order on the data values), we interpret the resulting state s as a new initial state
(and thus I as a snapshot of the distribution of data values in that state s). Again
the convergence operator guarantees that the network will eventually get sorted and
stay sorted.

To handle the daemons that disable or enable communication links we made the
status of communications links dependent of the state of the program, specified that
the program can only converge to the required situation if SufficientConnections is
stable in the program, and assumed that SufficientConnections holds in the initial
state (i.e. it is an invariant). For, if, during the execution of the program, some
daemon deactivates a communication link in such a way that SufficientConnections
still holds the specification tells us that the network will eventually get sorted and
remain sorted.

Another nice result of the analysis in the previous section, is the compact and
expressive formalisation of the condition SufficientConnections.

6.2.3 Refine the specification

This subsection describes the refinement and decomposition of the convergence-part
of specification 6.2.12. Since HOL verification is done at later stages, the intermedi-
ate predicates, which result from refinement or decomposition by applying UNITY
rules, have to be written down with accuracy. The validity of dNetwork.P.neighs,
distinct Sort Vars.P.D, (≺p 6= ∅), AntiSymmetric.≺p.P, and Transitive.≺p.P shall be im-
plicitly assumed from now on. Consequently, the specification which will be refined is:

S0 : Permutation.P.D.I ∧ SufficientConnections.ACs.≺p ∧Total.≺v.D.P
Sort` (D = I)   Sorted.P.D.≺p.≺v
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The solution strategy5, i.e. the strategy we want our program to employ in order to
satisfy S0, is one that reduces the number of wrong pairs of processes.

Definition 6.2.13 set of wrong pairs of processes WPs DEF

WPs.P.D.≺p.≺v.s = {(i, j)|i, j ∈ P ∧ (i ≺p j) ∧ ¬(((s ◦D).i) ≺v ((s ◦D).j))}

Definition 6.2.14 number of wrong pairs of processes nr WPs DEF

nr WPs.P.D.≺p.≺v.s = card.(WPs.P.D.≺p.≺v.s)
J

In other words, during the execution of a program – which uses this strategy to sort
a network – progress is ensured since the number of wrong pairs of processes reduces.
In a sorted network there are no wrong pairs of processes:

Theorem 6.2.15 Sorted EQ nr WPs 0

Sorted.P.D.≺p.≺v= (nr WPs.P.D.≺p.≺v.s = 0)
J

Consequently, since nr WPs.P.D.≺p.≺v.s is always a value from N0, the less-than (<) is
known to be a well-founded relation on N0, and since the value of nr WPs.P.D.≺p.≺v.s
reduces during the execution of a program that exploits our solution strategy, the
network shall eventually get sorted.

We shall now refine S0 according to this proposed solution strategy. For the sake
of readability:

• all predicates that have to be confined by the write variables of the program
Sort, in order for some laws to be applicable, are gathered into a set called Conf
which shall be expanded at the end of this section.

• The stability requirements (i.e. Permutation.P.D.I, SufficientConnections.ACs.≺p

and Total.≺v.D.P) in S0 are omitted from the specifications. So S0 becomes:

S0 : (D = I)   Sorted.P.D.≺p.≺v

Before we continue it must be pointed out that when mechanical verification is at-
tempted, one must be prepared to deal with every detail explicitly.

Let us start by rewriting specification S0 into a more suitable form. Since every-
thing implies true, we can use Theorem 6.2.15 and   substitution (Theorem 4.6.350)
to derive:

S0 : (D = I)   Sorted.P.D.≺p.≺v

⇐ (  substitution 4.6.350)

5There are other possible solution strategies, see for example [CM89].



82 Chapter 6 A methodology and a case study

S1 : true   (nr WPs.P.D.≺p.≺v= 0)

where, behind the scenes, the set Conf becomes: {(D = I), Sorted.P.D.≺p.≺v}

Now S1 shall be refined according to the solution strategy informally described above.
Recall the Bounded Progress principle for   (Theorem 4.5.2049), evidently our so-
lution strategy is an instance of this principle. Let us apply this principle to S1:

S1 : true   (nr WPs.P.D.≺p.≺v= 0)

⇐ (  Bounded Progress 4.5.2049, < well-founded on N0, nr WPs.P.D.≺p.≺v∈ N0)

S2 : (nr WPs.P.D.≺p.≺v= 0)   (nr WPs.P.D.≺p.≺v= 0)
∧
S3 : ∀m ∈ N0 :

(nr WPs.P.D.≺p.≺v= m)   (nr WPs.P.D.≺p.≺v< m∨nr WPs.P.D.≺p.≺v= 0)

S2 can be decomposed into smaller specifications, using Theorems   Reflexivity
and � Conjunction:

S2 : (nr WPs.P.D.≺p.≺v= 0)   (nr WPs.P.D.≺p.≺v= 0)

⇐ (  Reflexivity 4.6.550)

S2a : �(Permutation.P.D.I ∧ SufficientConnections.ACs.≺p ∧ Total.≺v.D.P)

∧

S2b : (� Permutation.P.D.I) ∧ SufficientConnections.ACs.≺p ∧ Total.≺v.D.P
∧ nr WPs.P.D.≺p.≺v= 0)

⇐ (� Conjunction 4.4.444)

S2c : (� Permutation.P.D.I) ∧ (� SufficientConnections.ACs.≺p)
∧ (�Total.≺v.D.P) ∧ (� nr WPs.P.D.≺p.≺v= 0)

Now, observe that for the case that m = 0, S3 boils down to S2. Since specifications
S2a and S2b already cover this, we can assume m > 0 in decomposing S3. Conse-
quently, (nr WPs.P.D.≺p.≺v= m) implies (nr WPs.P.D.≺p.≺v> 0), which is the same
as ¬Sorted.P.D.≺p.≺v. The following lemma can easily be proved for all m > 0 using
6.2.5 and 6.2.1:

Lemma 6.2.16 SuffCons AND not Sorted IMP WP AND AC

SufficientConnections.ACs.≺p ∧(nr WPs.P.D.≺p.≺v= m) ∧m > 0
∃i, j ∈ P : (nr WPs.P.D.≺p.≺v= m) ∧WP.i.j ∧ AC.i.j

J
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Now, we can rewrite S3 as follows:

S3 : ∀m ∈ N0 :
(nr WPs.P.D.≺p.≺v= m)   (nr WPs.P.D.≺p.≺v< m∨nr WPs.P.D.≺p.≺v= 0)

⇐ (  Substitution 4.6.350, lemma 6.2.16, and m > 0)

S4 : ∀m : m > 0 :
∃i, j ∈ P : (nr WPs.P.D.≺p.≺v= m) ∧ WP.i.j ∧ AC.i.j
 
∃i, j ∈ P : nr WPs.P.D.≺p.≺v< m

⇐ (  Disjunction 4.5.1849, and ≺p 6= ∅)

S5 : ∀m : m > 0 : ∀i, j ∈ P :
(nr WPs.P.D.≺p.≺v= m) ∧ WP.i.j ∧ AC.i.j   (nr WPs.P.D.≺p.≺v< m)

⇐ (  Introduction 4.6.450, � Conjunction 4.4.444, and assumed validity of S2c)

S6a : ∀m : m > 0 : �nr WPs.P.D.≺p.≺v< m
∧
S6b : ∀m : m > 0 : ∀i, j ∈ P :

Permutation.P.D.I ∧ SufficientConnections.ACs.≺p ∧Total.≺v.D.P
∧ (nr WPs.P.D.≺p.≺v= m) ∧WP.i.j ∧ AC.i.j
ensures
nr WPs.P.D.≺p.≺v< m

The refinement is now completed since the progress parts are solely expressed in terms
of ensures . So we have decomposed and refined specification S0 into:

S0 ⇐ S2c ∧ S6a ∧ S6b ∧ ∀p : p ∈ Conf : p C wSort

where Conf = {(D = I),Sorted.P.D.≺p.≺v, nr WPs.P.D.≺p.≺v, WP.i.j, AC.i.j}.

6.2.4 Construct a program that satisfies this refined specifica-
tion

Considering the properties of the network – principally the property that a process can
only communicate with one other process at the same time – it is evident that the only
thing two connected processes can do is compare their values and swap them if they are
out-of-order with respect to the processes labels. The resulting program is presented
in Figure 6.4; it performs a topological sort on the directed acyclic graph G≺p =
(P, {(u, v) | u ≺p v}. Note that the variables {aC.i.j | i ∈ P ∧ j ∈ neighs.i}, although
not actually written by the program Sort, are added to the write variables of the
program Sort. The reason for this is that we assume an unstable environment in which
there are daemons present that can write these variables. Although these daemons



84 Chapter 6 A methodology and a case study

prog Sort
read {D i | i ∈ P} ∪ {aC.i.j | i ∈ P ∧ j ∈ neighs.i}
write {D i | i ∈ P} ∪ {aC.i.j | i ∈ P ∧ j ∈ neighs.i}
init SufficientConnections.ACs.≺p ∧ Total.≺v.D.P
assign

8i, j : (i, j ∈ P) :
if WP.i.j ∧ AC.i.j
then(D.i), (D.j) := (D.j), (D.i) (swap.(i, j))

Figure 6.4: The sorting program
J

are not explicitly specified, their presence is implicitly implied by the occurrence of
the variables {aC.i.j | i ∈ P ∧ j ∈ neighs.i} in the write variables. Since the fact that
these variables are assumed to be writable implies that they can somehow change.

6.2.5 Prove that the program satisfies the specification

In order to verify that UNITY program Sort satisfies specification 6.2.12, we have to
show that, if dNetwork.P.neighs, distinct Sort Vars.P.D, (≺p 6= ∅), AntiSymmetric.≺p.P,
and Transitive.≺p .P, then the program satisfies specification S0, and has invariants
(` �SufficientConnections.ACs.≺p) and (` �Total.≺v .D.P) Before we do this, let us
first look more closely at the program and some of its properties.

All actions which can be non-deterministically selected during the execution of the
program, do the same: the data values of two connected processes are compared and
swapped if and only if these values are out-of-order with respect to the processes’ la-
bels. Swapping the data values of two connected processes i and j, means that process
i stores the data value of process j in its local variable and vice versa. Furthermore,
only two processes at the same time are considered so that the data values of all other
processes are unchanged. The following definition states the predicate which holds
after executing an action that swapped two data values.

Definition 6.2.17 Swapped DEF

Swapped.P.D.s.t = ∃i j : i, j ∈ P :
WP.i.j.s

∧ (∀k : k ∈ P ∧ k 6= i ∧ k 6= j : (s ◦D).k = (t ◦D).k)
∧ (s ◦D).i = (t ◦D).j ∧ (s ◦D).j = (t ◦D).i

J

Since every action either swaps data values or does nothing otherwise, the following
can be easily inferred:
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Theorem 6.2.18 Swap OR SKIP

For all actions a ∈ aSort and all states s and t:

a.s.t
Swapped.P.D.s.t ∨ s = t

J

Now let us turn to our specification and show that our program satisfies S2c, S6a and
S6b. It can easily be verified that program Sort satisfies S2c.

• if an action of the program results in changing a process’ data value then this
value is exchanged (i.e. substituted) for a data value of another process. Con-
sequently, the distribution of the data values among the processes remains a
permutation of the initial distribution, i.e. Permutation.P.D.I is stable.

• since for all i, j ∈ P, the action swap.(i, j) does not alter the variables aC.i.j,
SufficientConnections.ACs.≺p is stable in the program Sort

• since only out-of-order-pairs are swapped no swapping whatsoever will be done
if the network is sorted, so (nr WPs.P.D.≺p.≺v= 0) is stable.

� (S2c)

Less trivial, however, is to recognise that the stability predicate S6a and the progress
property S6b are satisfied. In order to show that they hold, it turns out to be sufficient
to prove that our program employs the solution strategy that was introduced in section
6.2.3, that is if two processes swap their data values, then the total number of wrong
pairs of processes decreases. In other words, we must prove that if the program finds
itself in some state s in which it holds that there still exist wrong pairs of processes,
then if t is the state in which the program results after swapping the data values of
some connected wrong pair (which exists because of theorem 6.2.1), then the number
of wrong pairs in state t is less than the number of wrong pairs in state s. More
formally, in order to show that S6a and S6b are satisfied by the program, it suffices
to show the following theorem:

Theorem 6.2.19 Decreasing WPs

For all m ∈ N0 and states s and t:

nr WPs.P.D.≺p.≺v.s = m ∧ Swapped.P.D.s.t
nr WPs.P.D.≺p.≺v.t < m

J

Let us first assume that 6.2.19 holds and prove that the program satisfies S6a and S6b.

To show that S6a is satisfied it must be demonstrated that for all m > 0, for all
actions a ∈ aSort and for all states s and t it holds that:

nr WPs.P.D.≺p.≺v.s < m ∧ a.s.t
nr WPs.P.D.≺p.≺v.t < m

Assume nr WPs.P.D.≺p .≺v .s < m and a.s.t, then, following 6.2.18, there are two
possible cases that can be distinguished:
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• s = t, this immediately establishes the proof.
• Swapped.P.D.s.t holds. From the assumption that nr WPs.P.D.≺p.≺v.s < m we

can deduce that there exists a k < m such that nr WPs.P.D.≺p.≺v.s = k. From
6.2.19 we then know that nr WPs.P.D.≺p.≺v.t < k, which establishes the proof
since k < m.

� (S6a)

Now let us turn to S6b, rewriting it with the definition of ensures (Definition 4.4.243)
gives us the following two proof obligations for all m > 0 and i, j ∈ P:

Permutation.P.D.I ∧ SufficientConnections.ACs.≺p ∧ Total.≺v.D.P
∧ nr WPs.P.D.≺p.≺v= m ∧ WP.i.j ∧ AC.i.j

unless
nr WPs.P.D.≺p.≺v< m

∧
∃a : a ∈ aSort :

a.s.t
∧ Permutation.P.D.I.s ∧ SufficientConnections.ACs.≺p.s ∧ Total.≺v.D.P
∧ ((nr WPs.P.D.≺p.≺v.s = m) ∧ WP.i.j.s ∧ AC.i.j.s
∧ ¬(nr WPs.P.D.≺p.≺v.s < m)
⇒
nr WPs.P.D.≺p.≺v.t < m

The first conjunct (i.e. unless -part) is easy to prove, for if, after executing action a:
• s = t holds, then unless is trivially established
• Swapped.P.D.s.t holds, then 6.2.19 confirms that nr WPs.P.D.≺p.≺v.t < m.

In order to prove the exists-part, we must find an action which reduces the number of
wrong pairs of processes, given that there exists a connected wrong pair of processes
(i, j). Obviously, using Theorem 6.2.19, this is the action swap.(i, j).
� (S6b)

Recapitulating, we have shown that if 6.2.19 holds, then our program Sort satisfies the
sub-specifications S6a and S6b. So to finish the verification of our program’s satisfia-
bility to S0, it suffices to show that all elements of Conf are elements of Pred.(wSort),
and that theorem 6.2.19 holds. The latter is repeated below for convenience:
for all m ∈ N0 and states s and t:

nr WPs.P.D.≺p.≺v.s = m ∧ Swapped.P.D.s.t
nr WPs.P.D.≺p.≺v.t < m

(6.2.19)

Assume nr WPs.P.D.≺p.≺v.s = m and Swapped.P.D.s.t. From these assumptions we
can infer that there exists a pair of processes of which the data values are swapped
during the state-transition from s to t, let us call this pair (i, j). Evidently it holds
that i ≺p j ∧ ¬((s ◦ V ).i ≺v (s ◦ V ).j). Now, for an arbitrary state s, we look at
WPs.P.D.≺p.≺v.s and split this set up in seven disjoint sets using i and j.
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Figure 6.5: The possible edges in the set WPs.P.D.≺p.≺v.s, when (i, j) ∈ WPs.P.D.≺p

.≺v.s.
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For any state s:

WPs.P.D.≺p.≺v.s =
7

⋃

n=1

WPn.s (6.2.2)

where

WP1.s = {(x, y)|x, y ∈ P ∧x ≺p y∧¬((s◦V ).x ≺v (s◦V ).y)∧x 6= i∧x 6= j∧y 6= i∧y 6= j}

WP2.s = {(x, y)|x ∈ P ∧x 6= i∧x 6= j∧x ≺p i∧(y = i∨y = j)∧¬((s◦V ).x ≺v (s◦V ).y)}

WP3.s = {(x, y)|y ∈ P ∧y 6= i∧y 6= j∧j ≺p y∧(x = i∨x = j)∧¬((s◦V ).x ≺v (s◦V ).y)}

WP4.s = {(x, y)|((x = i ∧ y 6= j ∧ i ≺p y ∧ y ≺p j) ∨ (y = j ∧ x 6= i ∧ i ≺p x ∧ x ≺p j))
∧¬((s ◦ V ).x ≺v (s ◦ V ).y)}

WP5.s = {(i, j)}

WP6.s = {(i, y)|y 6= j ∧ i ≺p y ∧ ¬(j ≺p y) ∧ ¬(y ≺p j) ∧ ¬((s ◦ V ).i ≺v (s ◦ V ).y)}

WP7.s = {(x, j)|x 6= i ∧ x ≺p j ∧ ¬(x ≺p i) ∧ ¬(i ≺p x)¬((s ◦ V ).x ≺v (s ◦ V ).j)}

and:

∀k, l : k, l = 1, 2, . . . , 7 ∧ k 6= l : WPk.s ∩ WPl.s = ∅ (6.2.3)

From Figure 6.5, which shows the directed graph G≺p , one can deduce how the edges
in the set WPs.P.D.≺p.≺v .s are divided among the seven sets above. The numbers
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n associated with the edges correspond with the set WPn.s in which they reside.
Edges in set WP1.s, are edges between two nodes which are neither i nor j. Edges
in WP2.s are the incoming edges of i, and those incoming edges of j which result
from the transitivity of ≺p on the incoming edges of i and the edge (i, j). Set WP3.s
consists of the outgoing edges of j, and those outgoing edges of i which result from
≺p’s transitivity on the outgoing edges of j and the edge (i, j). WP4.s contains the
incoming edges of a node k, which is neither i nor j, and for which it holds that
i ≺p k ≺p j. Set WP5.s is the singleton set with edge (i, j). WP6.s comprises the
edges (i, k), where k is not ≺p-related to j (i.e. neither k ≺p j nor j ≺p k hold).
Finally, WP7.s is the set of the edges (k, j), where k is not ≺p-related to i.

From 6.2.2 and 6.2.3, the validation of which are left as simple exercises to the
reader, it follows that:

nr WPs.P.D.≺p.≺v.s =
7

∑

n=1

card.(WPn.s) (6.2.4)

The proof of 6.2.19 now proceeds by comparing the cardinality of the different WP’s
in transition states s and t.

card.(WP1.s) = card.(WP1.t), because the assumption Swapped.P.D.s.t indicates that
the data values of processes other than i and j do not change.

card.(WP2.s) = card.(WP2.t) In order to prove this equality, it suffices to show that
there exists a bijection f from WP2.s to WP2.t. Below a function f is given
which satisfies this constraint.

f = λ(x, y).if y = i then (x, j) else (x, i)

The proof that f is a bijection is left as an exercise to the reader.

card.(WP3.s) = card.(WP3.t) A similar proof as the one for card.(WP2.s) = card.(WP2.t)
applies. A satisfactory bijection is:

f = λ(x, y).if x = i then (j, y) else (i, y)

card.(WP4.s) ≤ card.(WP4.t) To prove this, it is sufficient to verify that WP4.t ⊆
WP4.s. Suppose we have a pair (x, y) ∈ WP4.t, now we must show that (x, y) ∈
WP4.s. From the definition of WP4.t we learn that there are two possibilities:

• x = i, y 6= j and ¬((t ◦ V ).i ≺v (t ◦ V ).y).

Assuming these conditions, we must show that (i, y) ∈ WP4.s. Because we
already have that x = i, y 6= j, i ≺p y and y ≺p j, we only have to prove
that ¬((s ◦V ).i ≺v (s ◦V ).y), which is equal to (s ◦V ).y ≺v (s ◦V ).i since
≺v is a total order. From the assumption that ¬((t ◦ V ).i ≺v (t ◦ V ).y) it
can be deduced that:
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1. y 6= i, because of the reflexivity of ≺v and the fact that ¬((t ◦ V ).i ≺v

(t ◦ V ).y) holds.
2. (t ◦ V ).y ≺v (t ◦ V ).i, for ≺v is a total order.

From the assumption Swapped.P.D.s.t and its presumed instantiation with
(i, j), the following can be inferred:

3. (t ◦ V ).i ≺v (t ◦ V ).j
4. (t ◦ V ).j = (s ◦ V ).i
5. (s ◦ V ).y = (t ◦ V ).y, because of (1) and y 6= j.

Now the transitivity and totality of ≺v establishes that (s◦V ).y ≺v (s◦V ).i,
since:

(s ◦ V ).y
(5)
= (t ◦ V ).y)

(2)
≺v (t ◦ V ).i

(3)
≺v (t ◦ V ).j

(4)
= (s ◦ V ).i

• y = j, x 6= i and ¬((t ◦ V ).x ≺v (t ◦ V ).j).

In this case we must show that (x, j) ∈ WP4.s, which again comes down to
showing that (s ◦V ).j ≺v (s ◦V ).x holds. Analogous to the previous proof
this can be done by showing:

(s ◦ V ).j = (t ◦ V ).i ≺v (t ◦ V ).j ≺v (t ◦ V ).x = (s ◦ V ).x

card.(WP5.s) < card.(WP5.t), because card.(WP5.s) and card.(WP5.t) equal 1 and 0
respectively.

card.(WP6.s) ≤ card.(WP6.t) and card.(WP7.s) ≤ card.(WP7.t), proofs are analogous to
that of card.(WP4.s) ≤ card.(WP4.t).

Since the above seven items indicate that

7
∑

n=1

WPn.t <
7

∑

n=1

WPn.s

this completes the proof of 6.2.19, because, according to 6.2.4, this means:

nr WPs.P.D.≺p.≺v.t < nr WPs.P.D.≺p.≺v.s.

To complete the proof that the program satisfies specification 6.2.12, we still have to
verify that the following:

1. ∀p : p ∈ Conf : p C wSort

2. ( Sort` �Total.≺v.D.P)

3. ( Sort` �SufficientConnections.ACs.≺p

Verification of the first condition is left as an exercise to the reader, the other condi-
tions can easily be proved by applying definition 4.4.844 and S2c.
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6.2.6 Mechanical verification activities

We shall start by representing the program in the HOL embedding of UNITY. Since
fancy notation like P, ≺p, and ≺v are not possible within HOL, these concepts shall
in this section be denoted by P, pOrd, and vOrd respectively.

First, we shall look at the program variables, and which values can be assigned
to them. The values that can be assigned to the aC.i.j variables are booleans; the
variables that can be assigned to the D.i variables can be of any type on which a
total order ≺v is defined. Obviously, since these different variables can take values of
different types, we use the theory described in Chapter 3. Consequently, we presume
that for all i, j ∈ P, D.i and aC.i.j have actual type Val. Moreover, we shall assume
that for all i, j ∈ P, aC.i.j has intended type bool, and leave the intended type of D.i
unspecified.

Second, we determine the required types of the labels of the processes in P. For
consistency with subsequent chapters, where processes can be assigned to a variable
having actual type Val, we shall consider Val to be the type of the labels of the pro-
cesses in P. Since the labels can be of any type on which a non-empty, anti-symmetric
and transitive order is defined, we shall leave the intended type of the labels unspec-
ified. For convenience we define the following type synonym:

val process = ty_antiq(==‘:Val‘==);

The type declaration specifying the intended type of the aC variables becomes:

HOL-definition 6.2.20

val type_DECL_Sort = new_definition("type_DECL_Sort",
(--‘type_DECL_Sort (aC:^process ->^process ->’var)

=
!(i:^process) (j:^process) (s:^State). (is_bool (s (aC i j)))‘--));

J

In order to be able to define the state-predicates WP and AC (which are used as guards
in the program) as regular state-functions (see Section 5.4) we shall assume that P,
neighs, pOrd and vOrd have the following types:

• P:Val, where, the intended type of P is specified by is set.P, and the intended
type of the elements (being processes) are left unspecified.

• neighs: ^process->Val, where, for all processes p the intended type of value
neighs.p is specified by is set.(neighs.p)

• pOrd: (^process # ^process)->Val, where for all processes p and q, the in-
tended type of pOrd(p,q) is specified by is bool.(pOrd(p, q))

• vOrd: Val->Val->Val, where for two values x and y stored in the local vari-
ables D of two processes in P, the intended type of vOrd x y is specified by
is bool.(vOrd x y)
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Note that pOrd is not defined as a curried function like vOrd. The reason for this is
that, in Section 6.2.1, pOrd is used as relation (i.e. i ≺p j in Definition 6.2.4 on page
75) as well as a set of tuples (i.e. (≺p⊆ (≺p ∩ ACs.s))tr in definition 6.2.10 on page
78). Although we can easily mix these two on paper, in HOL this is not possible.
Defining pOrd to have type (^process # ^process)->Val enables us to use pOrd as
a set as well as a relation.

Now WP and AC can be defined as regular state-predicates as follows.

HOL-definition 6.2.21

val WP_DEF = new_definition("WP_DEF",
(--‘WP (i:^process) (j:^process) (D:^process->’var)

(pOrd:(^process # ^process)->Val) (vOrd: Val->Val->Val)
=
(CONST (pOrd (i,j)))
|/\|
not (BI_APPLY vOrd (VAR (D i)) (VAR (D j)))‘--));

HOL-definition 6.2.22

val AC_DEF = new_definition("AC_DEF",
(--‘AC (i:^process) (j:^process) (neighs:^process->Val)

(aC:^process->^process ->’var)
=
(CONST (i INv (neighs j))) |/\| (VAR (aC i j))‘--));

J

The set of all active connections is, like the order pOrd, modelled by a function of
type (^process # ^process)->Val:

HOL-definition 6.2.23

val ACs_DEF = new_definition("ACs_DEF",
(--‘ACs (neighs:^process->Val) (aC:^process->^process ->’var)

(s:^State) (i,j):(^process # ^process)
=
(AC i j neighs aC s)‘--));

J

Now, we shall formalise the condition Sufficient Connections. Unfortunately, this
condition can not be formalised as a regular state-function. Fortunately, however, we
do not have to prove that the state-predicate Sufficient Connections is confined
by the write variables of the program sort, since it does not appear in the set Conf at
the end of Section 6.2.3.

First, we add the inductive definition of a transitive closure of a relation R on a set A
to HOL (see 6.2.978) as a recursive function on numerals.
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HOL-definition 6.2.24

val tr_n_DEF = new_recursive_definition
{name = "tr_n"
,fixity = Prefix,
,def =
(--‘((tr_n 0) = (\(R:(Val # Val)->Val) (A:Val) (x,y). (R (x,y))))

/\
(!(n:num).

((tr_n (SUC n)) = (\(R:(Val # Val)->Val) A (x,y).
((tr_n n R A (x,y)) Or
(Exists z :: (CHFv A).
((tr_n n R A (x,z))

And
(tr_n n R A (z,y))))))))‘--)

,rec_axiom = (theorem "prim_rec" "num_Axiom")};

val tr_DEF = new_definition ("tr_DEF",
(--‘tr (R:(Val # Val)->Val) (A:Val) ((x:Val),(y:Val)) =

tr_n (CARDn A) R A (x,y)‘--));
J

To bring these HOL definitions into line with Definition 6.2.978 from Section 6.2.1,
for a relation R on a set A

• the relation Rtr is modelled by tr R A

• the relation Rn is modelled by tr n n R A

The state-predicate Sufficient Connections is formalised below. Note that, since
we have defined the operator |/\| to be of general type:

(’a->Val)->(’a->Val)->’a->Val
in stead of:

(State->Val)->(State->Val)->State->Val
it can be used here to model the intersection of pOrd and ACs.

HOL-definition 6.2.25

val Sufficient_Connections = new_definition("Sufficient_Connections",
(--‘Sufficient_Connections (P:Val) (neighs: ^process->Val)

(aC:^process->^process ->’var)
(pOrd:(^process # ^process) ->Val)

=
|!!| i j :: (CHFv P) .

(CONST_EXPR (pOrd (i,j)))
|==>|

(\(s:^State). tr (pOrd |/\| (ACs neighs aC s)) P (i,j))‘--));
J
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Finally the program Sort can be defined in HOL, as a quadruple of type Uprog.

HOL-definition 6.2.26
val Sort = new_definition("Sort",

(--‘Sort (P:Val) (neighs:^process->Val)
(D:^process->’var) (aC:^process->^process ->’var)
(pOrd:(^process # ^process) ->Val) (vOrd:Val->Val->Val)

=
(CHF{GUARD ((WP i j D pOrd vOrd) |/\| (AC i j neighs aC))

(ASSIGN [(D i) ; (D j)]
[(VAR (D j)); (VAR (D i))]) | i INb P /\ j INb P}

,
((Sufficient_Connections P neighs aC pOrd):^State->Val)
|/\| (total vOrd D P)

,
CHF({D i | i INb P} UNION {aC i j | i INb P /\ j INb (neighs i)})
,
CHF({D i | i INb P} UNION {aC i j | i INb P /\ j INb(neighs p)}))‘--));

J

The state-predicate defining whether the values in the network are sorted with respect
to orders pOrd and vOrd is defined in HOL by the following regular state-predicate:

HOL-definition 6.2.27
val Sorted_DEF = new_definition("Sorted_DEF",

(--‘Sorted (P:Val) (D:^process->’var)
(pOrd:(^process # ^process) -> Val) (vOrd :Val->Val->Val)

=
|!!| i j : (CHFv P) :

(CONST (pOrd (i,j)))
|==>|
(BI_APPLY vOrd (VAR (D i)) (VAR (D j)))‘--));

J

The term that represents specification S0 is:

(--‘!(P:Val) (neighs:^process->Val) (I:^process->Val) (D:^process->’var)
(aC:^process->^process->’var) (pOrd:(^process # ^process)->Val)
(vOrd:Val -> Val -> Val).

((dNetwork P neighs) /\ (distinct_Sort_Vars P D)
/\ ~(empty pOrd) /\ (anti_sym pORD P) /\ (transitive pOrd P))

==>

CONe (Sort P neighs D aC pOrd vOrd)
((Permutation P D I) |/\| (Sufficient_Connections P neighs aC pOrd)
|/\| (total vOrd D P))
(|!!| i :: (CHFv P). (VAR (D i)) EQ (CONST (I i)))
(Sorted P D pOrd vOrd)‘--)
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prog Daemon
read {aC i j | i ∈ P ∧ j ∈ neighs.i}
write {aC i j | i ∈ P ∧ j ∈ neighs.i}
init SufficientConnections.ACs.≺p

assign 8i, j : (i, j ∈ P) ∧ j ∈ neighs.i :

if AC.i.j ∧ SufficientConnections.(ACs− {(i, j)}).≺p
then aC.i.j := ¬aC.i.j (de-activate.(i, j))

8

8i, j : (i, j ∈ P) ∧ j ∈ neighs.i :

if ¬ AC.i.j
then aC.i.j := ¬aC.i.j (activate.(i, j))

Figure 6.6: The daemon
J

where empty, anti sym, and transitive are HOL definitions having the desired
semantics. In order to prove this goal to be a theorem, first, a proof tree must be
constructed using the refinement and decomposition strategy from Section 6.2.3, then
the proof tree must be closed using the proof in Section 6.2.5.

6.2.7 Discussion

Although the tackled problem in this case study is simple, and its primary aim is
to illustrate the application of the extended UNITY methodology, there are some
subtleties that have to be highlighted.

We have modelled the presence of daemons that can de-activate and re-activate
the communication links implicitly by adding the variables aC (denoting whether a
link is active) to the write variables of our sorting program. What we would really
want, however, is to model the daemons explicitly and prove that the composition of
our sorting program with the daemons establish the specification. Unfortunately, this
is not possible within the version of UNITY used here. Consider the explicit model of
the daemons presented in Figure 6.6. It is not hard to see that these daemons satisfy
the property:

Daemon`�SufficientConnections.ACs.≺p

However,

Permutation.P.D.I ∧ SufficientConnections.ACs.≺p ∧Total.≺v.D.P
Sort8Daemon` (D = I)   Sorted.P.D.≺p.≺v

cannot be proved, since we can construct a valid UNITY execution sequence of
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Sort8Daemon, in which the Deamon continuously de-activates the link over which Sort
is about to communicate and hence prevents the network from getting sorted. Suppose
we have the following network, P = {x, y, z} and links.P.neighs = {(x, y); (y, z); (z, x)}.
Then the following is a fair UNITY execution:

[ de-activate.(x, y); swap.(x, y); activate.(x, y);
de-activate.(y, z); swap.(y, z); activate.(y, z);
de-activate.(z, x); swap.(z, x); activate.(z, x) ]∗

Evidently, all swap actions is this sequence have no effect (i.e. skip) since when they
are executed their guards are disabled. Consequently, the network shall not get sorted
eventually.

The reason for this is that the notion of fairness in UNITY programs, which is
implied by the UNITY fairness rule that constrains nondeterministic action selection
during program execution, is weak fairness. That is [Fra86], an action will not be
indefinitely postponed provided that its guard is continuously enabled. Consequently,
since the guard of the action swap is not continuously enabled, the actual event
of swapping to values can be postponed indefinitely. What we need to establish a
sorted network is a notion of strong fairness, i.e. fairness that guarantees eventual
occurrence of an action under the condition that its guard is infinitely-often enabled,
but not necessarily continuously.

6.3 Reflections

Sketched in broad outlines, our experience with formal methods and theorem provers
used during the development process of (distributed) programs is twofold:

• they increase one’s confidence in the correctness of the proof
• using them takes time.

We found that, on paper, errors can easily creep into a proof, even when the proof
is done with extreme care. In the main, this is caused by the implicit assumption
of, at first sight trivial, lemmas which turn out to be invalid. With a prover this is
out of the question, since every lemma has to be proven explicitly. Consequently, the
correctness of all lemmas used in the proof is guaranteed. Another matter in which
more confidence is obtained is the completeness of assumptions. The complete set of
assumptions is determined during verification. One starts with an empty set of as-
sumptions, and subsequently every emerging proof obligation that cannot be proved
from earlier assumptions is added to the set of assumptions. Since the prover makes
sure that every proof obligation is made explicit, we shall not forget any assumption.
In addition, we are not likely to introduce superfluous assumptions, since the possibil-
ity to interactively construct proofs (which is available in many provers) considerably
helps in determining whether something is provable or not.

In the light of the second experience, the development of the sorting program took
approximately 6 man months, and included getting acquainted with HOL [GM93] and
Prasetya’s UNITY embedding [Pra95]. This is a lot of time, considering the complex-
ity of the problem solved, and the size of the program which was proven. Three
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Figure 6.7: Proportionate estimates of time and effort.
J

important questions now arise.

Are these large amounts of time justifiable?

For complex safety-critical processes, where a run-time error or failure could result
in death, injury, loss of property or environmental harm, the answer to this question
is a definite yes [Lev86, BJ87, PvSK90, Lap90, Lev91, BS92, BS93b, BM92, RvH93,
Bow93, BJ93, Rus94, GCR94, Lev95, Neu95]. Deaths due to poorly designed soft-
ware have occurred; for example the accidents that happened with the Therac-25, a
computerised radiation therapy machine. Between June 1985 and January 1987, six
known accidents involved massive overdoses by this machine – with resultant deaths
and serious injuries. For a thorough investigation of these accidents with the Therac-
25 the reader is referred to [LT93, Tho94a, Tho94b].

Are these large amounts of time acceptable in industrial applications?

Obviously, considering the competition and the “time to market”, the answer to the
second question is no [Hal90, CG92, BS93a, CGR93, WW93, BH94, BH95a, CS95].
Consequently, one important goal of future research in the area of formal methods
and mechanical verification is the reduction of the time which is necessary to formally
and mechanically develop and verify safety-critical software. This immediately brings
us to the last and most important question, namely:
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Which part of the development is the most time-consuming, and what can we do about
this?

For this last question we refer to Figure 6.7, in which the histogram shows the estimate
of the proportionate time spent on the steps from section 6.1, and the tree represents
the mechanical verification activities. Looking back, it can be said, with a vast degree
of certainty, that most of the time has been spent on the machine-checked proofs.
All in all, there are three activities that contribute to the amount of time used to
mechanically check the correctness of the program.

1. the time spent on insufficient proof-strategies and the time needed to backtrack
after these inadequacies are encountered, plus the time devoted to discover and
repair mistakes and/or faulty definitions (the dotted lines)

2. construction of the actual proof (the solid line)

3. developing re-usable basic theories (the shaded rectangle) upon which the proof
relies

Obviously, for more economical HOL-proofs, the dotted lines must be pruned and
decrease in number, the solid lines must become shorter, and the shaded rectangle
must become larger. Proof-engineering and the tools that are used to mechanically
verify the proof are propagated as means to reach these goals.

6.3.1 Proof engineering

To prune and decrease the number of dotted lines, we found that it is recommendable,
for complex proofs, to

make a pencil-and-paper proof, despite the fact that machine-checked ver-
ification will be done later.

A common mistake is to think that precise and formal pencil-and-paper proofs are
not required because all mistakes shall be filtered out during mechanical validation.
Although the latter is partially true, such an attitude can cost lots of time and effort
when a theorem prover is used. Discovering mistakes during verification in HOL is
marvellous, for it demonstrates the necessity of using such a prover. On the other
hand, however, mistakes have to be repaired, i.e. HOL definitions have to be changed
and the proofs must be redone accordingly. This is a tedious and time-consuming pro-
cess which sometimes could have been prevented by more accuracy before mechanical
verification is attempted. So, summing up, the motto is: “Do not get sloppy just be-
cause mechanical verification will be done later, it can save you lots of time.” Another
advantage of making formal pencil-and-paper proofs, is that these proofs can serve as
a proof strategy with which the theorem can be proved in HOL. Consequently, they
facilitate constructing a HOL proof, and reduce the time which is spent on insufficient
proof-strategies,

In order to create easier proofs and hence shorten the solid lines, an important
precept is:



98 Chapter 6 A methodology and a case study

do not confuse software-engineering with proof-engineering.

While writing a program (i.e. modelling in a programming language; software-
engineering) many choices have to be made, e.g. regarding the variables used (how
many, of what type, for which purpose). In software-engineering these choices have
to be made in such a way that the whole results in an efficient program. During
verification (i.e. modelling in logic; proof-engineering), the same choices also have
to be made. However, verification revolves around correctness of the program and
not its efficiency. Consequently, in proof-engineering the decisions made can differ
from those in software-engineering. For example, suppose there are parts in the proof
for which it is beneficial if a network is modelled as a set of processes, and suppose
there are other parts which prefer lists. We say, use both representations, add an
assumption which indicates that they contain the same elements, and, at any point,
use the one which is most suitable. In short:

If it makes your proof easier and speeds up the verification process: Just
do it!

More re-usable theories, resulting in larger rectangles, can shorten the solid lines of
future proofs. Identifying aspects of the proof as candidates for re-usable theory
is not easy, and most of the time becomes clear after completing the proof. Some
readers may now try to find page 70 because they remember something similar there,
and indeed there is. Analogous to what is stated there, we propose analysing the
problem, trying to obtain a good understanding of its essence, as an important means
to advance the detection of re-usable components. Although at this point, “analysing”
may still appear as vague to the reader, we promise to get more explicit in subsequent
chapters.

6.3.2 Tools

On the side of the tools, topics that have been suggested in literature are the follow-
ing. Improving the user interfaces of theorem provers [TBK92, Thé93, SB94, Sym95,
AGMT95, Mer95, Gra96, Ait96, BL96, Ber97, Bac98], for better user interfaces imply
better ways of visualising theories, enhanced accessibility, reducing the steepness of
the learning curve, high quality of data presentation, and enhanced error messages.

Improving the efficiency of theorem provers. In fully-expansive theorem provers,
like HOL, the proofs, generated in the system, are composed of applications of the
primitive inference rules of the underlying logic. Advantages are that the prover’s
soundness only depends on the implementations of the primitive inference rules; and
that users are free to write proof procedures without the risk of making the system
unsound. The disadvantage, however, is that resolving proofs into simple primitive
inferences can make the prover slow. In [Bou93] efficiency of fully-expansive theorem
provers is improved by eliminating duplicated and unnecessary primitive inferences.

Increasing availability of decision procedures. Decision procedures are an impor-
tant tool in theorem provers. They allow much low-level reasoning to be performed
automatically. Lemmas and theorems that appear trivial may take many minutes or
even days to prove by hand, especially for inexperienced users. Decision procedures
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can relieve users of some of this burden. ARITH_CONV, for example, was very useful to
us, and saved us lots of time. Unfortunately, the HOL system suffers from a rela-
tive lack of decision procedures. In addition to the Presburger procedure, the taut
library provides a decision procedure for propositional tautologies, the library faust
[SKK91] provides a decision procedure to check the validity of many formulae from
first order predicate logic. Some references to work on decision procedures in HOL
are [SKK93, ALW93, Har93a, Har94, Bou95, Bra96, Har96].

Lastly, combining theorem provers with other tools is an emerging field of re-
search. For example, in [BSBG98] an interface between the CLAM proof plan-
ner [BvHHS90] and HOL is described. Roughly, the interface sends HOL goals to
CLAM for planning, and translates plans back into HOL tactics that solve the ini-
tial goals. Recently, [Gun98] has presented a method that allows the results from
external decision procedures, like BBD’s and model checkers, to be incorporated
within HOL90 without compromising the latter’s logical consistency. Some other
references on combining theorem provers with model checkers or other tools include
[JS93, LC93, GL95, How96, BGG+98].
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The whole of science is nothing more than a refinement of every-
day thinking.

–Albert Einstein, Physics and Reality

Chapter 7

Program refinement in
UNITY

P rogram refinement has received a lot of attention in the context of stepwise
development of correct programs, since the introduction of transformational
programming techniques by [Wir71, Hoa72, Ger75, BD77] in the seventies.

This chapter presents a new framework of program refinement, that is based on a
refinement relation between UNITY programs. The main objective of introducing
this new relation it to reduce the complexity of correctness proofs for existing classes
of related distributed algorithms. It is shown, however, that this relation is also
suitable for the stepwise development of programs, and incorporates most of the
program transformations found in existing work on refinements. Section 7.1 gives an
overview of some of the existing work on program refinements that has inspired our
notion of program refinement. Moreover, an exposition on the word refinement and
its uses in technical contexts is given. Section 7.2 presents the motivation for having
a new refinement relation, and its formal definition, the properties, and different uses.
Section 7.3 finally concludes.

7.1 An overview of some existing work on refine-
ments

Whereas the word refinement has been used in technical contexts in several related
but subtly different ways, we can only give an overview after we have agreed on what
is considered to be a refinement and, more important, what refinements are being
considered. In Webster’s college dictionary [Inc95], refinement is defined as:

refinement n. 1. fineness or elegance of feeling, taste, manners, language, etc. 2.
an instance of this. 3. the act or process of refining. 4. the quality or state
of being refined. 5. a subtle point of distinction. 6. an improved form of
something. 7. a detail or device added to improve something.
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and all senses but 1 accord with the uses in computer science related contexts. We
shall start by making a clear distinction between program refinement on the one hand
and property refinement on the other.

Property refinement already occurred in Section 6.1 within the context of the
UNITY methodology for developing distributed programs. Here, a high level UNITY
specification – which, within the UNITY methodology, is a property and not a pro-
gram – is refined by adding more detail to it (i.e. 7 of Webster’s definition). The
specification is improved in the sense that, being more detailed by exploiting some
solution strategy, it gets easier to derive the final UNITY program that satisfies the
initial specification. This kind of property refinement, or specification refinement is
in some work also referred to as reification [Jac91].

Program refinement is the activity of transforming a complete program in order
to improve something (i.e. 6 and 7. of Webster’s definition). This something can be
the program itself (i.e. efficiency, costs, representation, etcetera), or the complexity
of the correctness proof of the program. Although the definition that states when one
program is considered to be a refinement of another differs among existing work on
program refinements (see the sections below), the type or kind of program refinements
(or program transformations) that are studied are generally the same. Before we
discuss existing work on program refinement, we shall give the meanings of these
different kinds of refinements.

data refinement is a program transformation where a (high-level, abstract) data
structure is replaced by another (lower-level, concrete) data structure. It was
first introduced in [Hoa72], and is very useful for improving the efficiency of
programs.

atomicity refinement is a program transformation where a program with a coarse
grain of atomicity is transformed into another program that uses a finer grain
of atomicity. It is a useful transformation rule. On the one hand, proving
algorithms with a coarse grain of atomicity is easier since fewer interleavings
have to be considered. On the other hand, distributed algorithms that use a
fine grain of atomicity are potentially faster as more processes may execute
concurrently.

strengthening guards is a program transformation of which the name speaks for
itself.

superposition refinement is a program transformation that, as we already dis-
cussed in Section 4.7, adds new functionality to an program in the form of
additional variables and assignments to these variables.

The existing work that shall be discussed in the following sections is concerned with
program refinements of distributed or concurrent programs.

7.1.1 The refinement calculus

The refinement calculus originates with Ralph Back [Bac78, Bac80] and was reintro-
duced by Joseph Morris [Mor89] and Carrol Morgan [Mor88, MG90, Mor90]. The
calculus provides a framework for systematic program development.
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The main idea behind the refinement calculus is considering both specifications
and code to be programs. A notion of refinement is then defined on these programs as
a reflexive and transitive relation that preserves total correctness1. More specifically,
a program P is refined by another program P ′ (denoted by P ≤ P ′ or P v P ′) if,
when both P and P ′ are started in the same state:
• if P terminates so does P ′

• the set of final states of P ′ is contained in the set of final states of P
This notion of refinement is defined using Dijkstra’s weakest pre-condition calculus
[Dij76]. Note that this definition of refinement is not a property preserving refinement.
All we know when P ≤ P ′ is that the input-output correctness is preserved; it does not
guarantee that the behaviour of P ′ during execution, and thus its temporal properties,
will be the same as the behaviour of P . Since the refinement calculus was originally
designed for sequential programs total correctness was sufficient. The refinement cal-
culus has however been lifted to work on both parallel [Bac89, Bac90, Ser90, BS91,
Bac93] and reactive (or distributed) [Bac90, vW92b, BvW94, BS96] systems, by using
action systems [BKS83, BKS84, BKS88] to model parallel and distributed systems as
sequential programs. Although preserving total correctness is also sufficient for paral-
lel systems, stepwise refinement of reactive or distributed systems also requires preser-
vation of temporal properties. Consequently, in [Bac90, vW92b, BvW94, BS96] the
notion of refinement was extended such that the preservation of temporal properties
was guaranteed.

The development of a program within the refinement calculus framework consists
of a sequence of correctness (or in the case of distributed systems, temporal properties)
preserving refinement steps, starting with an initial high-level specification and ending
with an efficient executable program. These correctness preserving refinement steps
are formulated as program transformations rules t ∈ programs→programs and added
to the refinement calculus framework by proving theorems of the form:

∀P ∈ programs ::
Verification Conditions hold for P

P ≤ t.P

In other words if certain verification conditions are satisfied, then applying rule t
to program P is a correctness (and in the case of distributed systems, temporal
properties) preserving refinement step. Many transformation rules can be found in
[Bac88, Bac89, BvW89, BvW90, Bac90, Ser90, BS91, vW92a, vW92b, Bac93, BS96,
SW97, BvW98, BKS98], concerning among others, data refinement, guard strengthen-
ing, superposition refinement, and atomicity refinement (or changing the granularity).

Some other references on uses of the refinement calculus for distributed systems
include [SW94a, SW94b, SW96], where the refinement steps are applied backwards in
order to obtain a formal approach to reverse engineering distributed algorithms. In
[Wal96, BW96, WS96, Wal98a, Wal98b, BW98] action systems and their refinements
are formalised and applied within the B-method [Abr96].

1In [Bac81] a notion of partial correctness preserving refinement is studied.
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7.1.2 Sanders’ mixed specifications and refinement mappings

Sanders [San90] has introduced a mixed specification technique (called mspecs) to de-
fine a notion of program refinement in UNITY. An mspec incorporates both program
text and a set of program properties. More specifically, an mspec consists of a de-
clare section that contains a list of variables together with their types (the Cartesian
product of these variables is referred to as the state space of the mspec); an initially
section that contains a predicate that specifies the allowed initial values of the vari-
ables; an assign section that contains a set of conditional assignment statements that,
in an operational view, constrain the behaviour of the program by specifying allowed
state changes; a property section containing a set of program properties (expressed
in a modified2 version of the UNITY logic) that further constrain the allowed state
changes, and for the progress properties, the allowed sequence of state changes.

Consequently, if the assign section is empty, an mspec is a standard UNITY specifi-
cation, and if the properties section is empty an mspec is a standard UNITY program.
An mspec is called implementable when all properties in the property section can be
proved to hold for the actions in the assign section.

A benefit of specifying UNITY programs with a mixed specification is the follow-
ing. Some desired program properties, like e.g. safety properties, are easier and more
intuitively expressed using statements instead of logic, while others (usually progress
properties) are better specified using logics [Lam83, Lam89]. In an mspec one can
benefit from both possibilities, which is good since getting a specification right in the
first place is crucial and not always easy.

A notion of refinement is defined on mspecs which is based on a refinement mapping
[Lam83, LS84, AL91, Lam94, Lam96] M from the state space of the refinement to
the state space of the original. It is denoted by (GrefinesF )M, and informally means:
• all initial conditions of G are mapped by M to the initial conditions on F
• if a state change from y0 to y1 is permitted by the assignments in the assign

section of G, then either a state change from M.y0 to M.y1 is permitted by the
the assignments in the assign section of F , or M.y0 equals M.y1.

• all properties of F are implied by the properties of G
Using this definition, several theorems are proved that state under which conditions
a property that holds in an mspec can be considered to hold in a refinement. To give
an indication of what these theorems look like, the 7→ preservation theorem is copied
below: [San90, page 13]:

F` p 7→ q ∧ (G refines F )M
∀i : ( F` ri ensures qi is used in the proof of F` p 7→ q) : G` ri ◦M ensures qi ◦M

G` p ◦M 7→ q ◦M

Similar theorems are given for preservation of unless , ensures , and fixed points.
Moreover, a theorem is proved that states when the program transformation of re-
placing a shared variable by a message communication system is a property preserving
(data) refinement. Stepwise derivation of programs within this framework now con-
sists of a sequence of refined mspecs, starting with an mspec containing a high level

2The modified version was defined to eliminate the need of the substitution axiom [San91] (see
Chapter 4)
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of abstraction, and ending up with an mspec that is implementable.

7.1.3 A.K. Singh

In [SO89, Sin89b, Mis90, Sin91, Sin93] refinement of UNITY programs is investigated.
Notions of property preserving and total correctness preserving (or fixed-point pre-
serving, as it is called in [Sin93]) refinements are defined3 as follows: [Sin93, page
511]:

Let F and G be two programs. G is a property-preserving refinement of F iff for
all predicates p, q, the following two assertions hold:
• F` p unless q ⇒ G` p unless q
• F` p 7→ q ⇒ G` p 7→ q

Similarly, G is a fixed-point preserving refinement of F iff
• F` true 7→ FPF ⇒ G` true 7→ FPG

• (FPG ∧ SIG) ⇒ (FPF ∧ SIF )
where FPP is the fixed point of a program P , i.e. it characterises the collection of
states that are invariant under the execution of every statement in P ; SIP denotes
the strongest invariant of a program P , i.e. it denotes the set of states reachable from
the initial state.

Having defined these two notions of refinement, theorems are proved stating under
which conditions certain program transformations are property-preserving and fixed-
point preserving refinements. To give an indication of what these theorems look like,
a theorem, stating the verification conditions under which strengthening the guard
of a program is a property and fixed-point preserving refinement, looks like: [Sin89b,
page 1] [Mis90] [Sin93, page 519]

Theorem Let F be a program and let s :: A if p be a statement. Let statement
t :: A if p ∧ q be obtained by strengthening the guard of statement s. Then, program
F 8 t is a property and a fixed-point preserving refinement of the program F 8 s if the
following two conditions hold.
• F` p 7→ q
• There exists a non-increasing function g from the program variables to a well-

founded set such that F` (g = k ∧ q) unless (¬p ∨ g < k), for all k

In [Sin93] similar theorems are proved for program transformations like data refine-
ment and atomicity refinement, and applied to to a number of examples.

7.1.4 Further reading

For some other work on refinement concepts within the UNITY (or a UNITY-like)
framework, the reader can for example read [ZGK90, Jon90, Kor91, Udi95, UK96,
Din97, GKSU98].

3The definitions of unless , ensures , and 7→ of Sanders’ logic [San91] are used.
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7.2 Another notion of refinement in UNITY

Like Sanders, but unlike Back and Singh, our refinement relation is not defined to be
property or correctness preserving, and accordingly additional theorems have to be
proved that state conditions under which properties of a program are preserved in its
refinement. These conditions, however, do not look like the ones in Sanders, but relate
to the verification conditions of the theorems in Back and Singh that argue about the
property preservation of specific program transformation rules. The main difference
between our refinement relation and the ones described in the previous sections, is
that its purpose it not the stepwise derivation of correct programs but the reduction
of complexity of correctness proofs of existing classes of related algorithms. The next
section shall exemplify this.

7.2.1 Why another notion of refinement?

Guard strengthening and superposition are transformations for the step-wise devel-
opment of programs, the formalisation of which was discussed in Chapter 4. This
section exemplifies why these program refinements are sometimes insufficient to re-
fine a program, and hence motivates the introduction of our new refinement relation.

Suppose we have a class of similar algorithms that seemingly establish the same
progress in various ways. Most of the time, algorithms in such a class differ by
having different mechanisms or control structures that influence their control flow and
degree of non-determinism. Sometimes, however, adding such a mechanism or control
structures, does not consist of one transformation, but a sequence (or composition)
of transformations which as a whole are a property preserving transformation but on
their own they are not. Consider, for example the following simple UNITY program
which is in the class of algorithms that, started with initial values x = 0 and y = 0,
increments both x and y until they have the value 10.

prog P
read {x, y}
write {x, y}
init x = 0 ∧ y = 0
assign if x ≤ 10 then x := x + 1 Px
8 if y ≤ 10 then y := y + 1 Py

Figure 7.1: Program P that increments both x and y until they have the value 10
J

It is easy to prove that true P` x = 0 ∧ y = 0   x = 10 ∧ y = 10 (see Figure 7.3).
Another algorithm in this class is one that reduces the non-determinism of P in such
a way that the value of x and y are incremented in an alternating way. Obviously,
this more deterministic program also satisfies (for some J) J ` x = 0 ∧ y = 0   x =
10 ∧ y = 10, and can be constructed by introducing a variable x turn of type bool –
the value of which indicates that it is x’s turn – and transforming P as follows:
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prog Q
read {x, y, x turn}
write {x, y, x turn}
init x = 0 ∧ y = 0 ∧ x turn = true
assign if x < 10 ∧ x turn then x := x + 1 ‖ x turn := ¬x turn Qx

8 if y < 10 ∧ ¬x turn then y := y + 1 ‖ x turn := ¬x turn Qy

Figure 7.2: Program Q; reducing P ’s non-determinism
J

The machinery for superposition refinements in UNITY, formalised in Chapter 4, is
inadequate for proving that this transformation is a property preserving one. This is
because if we augment the Px with assignment x turn:= ¬x turn to yield the program
AUG S.P.{Px}.(x turn := ¬x turn).(x turn = true), then we cannot subsequently aug-
ment action Py (of AUG S.P.{Px}.(x turn := false).(x turn = true)) with the assign-
ment x turn:= ¬x turn and prove that the properties are preserved, since the write
variables of AUG S.P.{Px}.(x turn := ¬x turn).(x turn = true) (i.e. wP ∪ {x turn})
are not ignored by the assignment x turn:= ¬x turn. Consequently, the formalisation
of the UNITY superposition rules are not sufficient to prove preservation of properties
under these kind of non-determinism reducing refinements. However, these refine-
ments are very powerful for reducing the complexity of a correctness proof for a class
of distributed programs. Non-deterministic programs are often easier to prove than
more deterministic ones, since simplicity is gained by avoiding unnecessary determin-
ism. To illustrate this we have displayed the proof of x = 0∧y = 0   x = 10∧y = 10
for programs P and Q in Figures 7.3 and 7.4 respectively. It is not hard to see that the
proof in Figure 7.3 is simpler than the proof in Figure 7.4. One reason for this is that,
because of P ’s freedom to increment x and y whenever it wants (i.e. non-determinism),
we are able to decompose the proof obligation x = 0 ∧ y = 0   x = 10 ∧ y = 10 into
the simpler proof obligations x = 0   x = 10 and y = 0   y = 10. For program Q
this is an inefficacious proof strategy because x and y cannot be increased indepen-
dently. Another reason is that, because of Q’s restricted freedom to increase x and y
(i.e. determinism), additional case distinctions on whether it is x’s turn or not have
to be made in order to be able to prove that progress can indeed be made.

Although this is just a simple example, it suggest that the total proof effort can
be significantly reduced if we have a refinement relation supporting non-determinism
reducing refinement. Since then, instead of laboriously proving properties directly
for a more deterministic program Q, we can reduce the proof-complexity by proving
these properties for the least deterministic variant P of Q, and conclude that these
properties also hold for Q.

7.2.2 The formal definition of our refinement relation

We start by defining the refinement relation between two actions. Suppose we have
two actions Al, Ar ∈ ACTION, a state-predicate J , and a set of variables V , we say
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true P` x = 0 ∧ y = 0 x = 10 ∧ y = 10
⇐ ( Conjunction (4.5.1949),  Substitution (4.6.350))
true P` x ≤ 10 x = 10 ∧ true P` y ≤ 10 y = 10
We continue with the first conjunct, the proof of the second conjunct is similar.
true P` x ≤ 10 x = 10
⇐ ( Bounded Progress (4.5.2049), and P`�x = 10)
true P` x ≤ 10 ∧ (10− x = k) (x ≤ 10 ∧ (10− x < k)) ∨ x = 10
⇐ ( Case distinction (4.6.750) x = 10∨x 6= 10,  Reflexivity (4.6.550), P`�x = 10,
and  Substitution (4.6.350))

true P` x < 10 ∧ (10− x = k) x ≤ 10 ∧ (10− x < k)
⇐ ( Introduction (4.6.450), and P`�x ≤ 10 ∧ (10− x < k))
P` x < 10 ∧ (10− x = k) ensures x ≤ 10 ∧ (10− x < k)

Figure 7.3: Proof of true P` x = 0 ∧ y = 0   x = 10 ∧ y = 10
J

Take J = (¬x turn ⇒ y = x− 1) ∧ (x turn ⇒ y = x), and prove that Q`�J .

J Q` x = 0 ∧ y = 0 x = 10 ∧ y = 10
⇐ ( Substitution (4.6.350))
J Q` x ≤ 10 ∧ y ≤ 10 x = 10 ∧ y = 10
⇐ ( Bounded Progress (4.5.2049), and Q`�x = 10 ∧ y = 10)
J Q` x ≤ 10∧y ≤ 10∧(20−x−y = k) (x ≤ 10∧y ≤ 10∧(20−x−y < k))∨(x = 10∧y = 10)
⇐ ( Case distinction (4.6.750) y = 10 ∨ y 6= 10,  Introduction (4.6.450), and
 Substitution (4.6.350) and (J ∧ x ≤ 10 ∧ y ≤ 10 ∧ y = 10) ⇒ (x = 10 ∧ y = 10))

J Q` x ≤ 10∧y < 10∧(20−x−y = k) (x ≤ 10∧y ≤ 10∧(20−x−y < k))∨(x = 10∧y = 10)
⇐ ( Case distinction (4.6.750) x = 10 ∨ x 6= 10, and  Substitution (4.6.350))
J Q` x = 10 ∧ y < 10 ∧ (20− x− y = k) (x ≤ 10 ∧ y ≤ 10 ∧ (20− x− y < k))
∧
J Q` x < 10 ∧ y < 10 ∧ (20− x− y = k) (x ≤ 10 ∧ y ≤ 10 ∧ (20− x− y < k))
The first conjunct can be proved by  Introduction (4.6.450), since (J ∧ x = 10∧ y < 10)
implies ¬x turn, and thus
Q` J ∧ x = 10 ∧ y < 10 ∧ (20− x− y = k) ensures x ≤ 10 ∧ y ≤ 10 ∧ (20− x− y < k)
We continue with the second conjunct as follows:
J Q` x < 10 ∧ y < 10 ∧ (20− x− y = k) x ≤ 10 ∧ y ≤ 10 ∧ (20− x− y < k)
⇐ ( Case distinction (4.6.750) (x turn ∨ ¬(x turn)))
J Q` x < 10 ∧ y < 10 ∧ (20− x− y = k) ∧ x turn x ≤ 10 ∧ y ≤ 10 ∧ (20− x− y < k)
∧
J Q` x < 10 ∧ y < 10 ∧ (20− x− y = k) ∧ ¬(x turn) x ≤ 10 ∧ y ≤ 10 ∧ (20− x− y < k)
⇐ ( Introduction (4.6.450) on both conjuncts)
Q` J ∧x < 10∧ y < 10∧ (20−x− y = k)∧ x turn ensures x ≤ 10∧ y ≤ 10∧ (20−x− y < k)
∧
Q` J ∧x < 10∧y < 10∧ (20−x−y = k)∧¬x turn ensures x ≤ 10∧y ≤ 10∧ (20−x−y < k)

Figure 7.4: Proof of J Q` x = 0 ∧ y = 0   x = 10 ∧ y = 10
J
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that Al is refined by Ar, or Ar refines Al, with respect to V and J (denoted by
Al vV,J Ar), when:

• the conjunction of J with the guard of Ar is stronger then the guard of Al.

• the results of Al and Ar, both executed in the same state s where J.s holds, on
the variables in V are the same.

Definition 7.2.1 Action Refinement A ref DEF

Let Al and Ar be two actions from the universe ACTION, J be a state predicate, and
V be a set of variables, then action refinement is defined as follows:

Al vV,J Ar = ∀s :: guard of.Ar.s ∧ J.s ⇒ guard of.Al.s
∧
∀s, t, t′ :: (compile.Al.s.t ∧ compile.Ar.s.t′ ∧ guard of.Ar.s ∧ J.s)

⇒ (t�V = t′ �V )
J

The fact that action refinement is reflexive and transitive is captured by the following
theorems.

Theorem 7.2.2 action refinement Reflexivity A ref REFL

For all A ∈ ACTION, J ∈ Expr, and sets of variables V :

A vV,J A

Theorem 7.2.3 action refinement Transitivity A ref TRANS1

For all A1, A2, A3 ∈ ACTION, J2, J3 ∈ Expr, and sets of variables V1, V2 and V3:

J3 ⇒ J2 ∧ V3 ⊆ V1 ∧ V3 ⊆ V2 ∧ A1 vV1,J2 A2 ∧ A2 vV2,J3 A3

A1 vV3,J3 A3

J

Next, we define our relation of program refinement. P is refined by Q, or Q refines
P , with respect to some relation R and state-predicate J , (denoted by P vR,J Q), if
we can decompose the actions of program Q into aQ1 and aQ2, such that

• R is a bitotal relation (see Definition A.3.3217) on the two sets of actions aP
and aQ1, i.e. for every action AP in aP there exists at least one action in aQ1

to which aP is related by R, and similarly for every action AQ in aQ1 there
exists at least one action in aP to which AQ is related by R.

• for all actions AP of aP and AQ of aQ1 that are related to each other by R (i.e.
AP R AQ holds), we can prove that AQ refines AP with respect to the write
variables of P and state-predicate J .
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aP

P

aQ1

Q

R

vwP,J

aQ2skip vwP,J

Figure 7.5: Program refinement in a picture.
J

• the actions of Q that are in aQ2 refine skip with respect to the write variables
of P and J .

For those readers that are enlightened by pictures, in Figure 7.5 a depiction of program
refinement is given. The formal definition of program refinement now reads:

Definition 7.2.4 Program Refinement P ref DEF

Let P, Q ∈ Uprog be two UNITY programs, R be a relation, and J ∈ Expr be a state
predicate, then program refinement is defined as follows:

P vR,J Q = ∃aQ1,aQ2 :: aQ = aQ1 ∪ aQ2 ∧ bitotal.R.aP.aQ1

∧
∀AP AQ : AP ∈ aP ∧ AP R AQ : AP vwP,J AQ

∧
∀AQ : AQ ∈ aQ2 : skip vwP,J AQ

J

Note that P vR,J Q does not say anything about Q inheriting properties or correct-
ness from P . Nor does it say anything about the explicit program transformations
that were (or could have been) applied to P in order to obtain Q. Moreover note
that, opposed to superposition refinement, P vR,J Q, does not necessarily imply
that wP ⊆ wQ. Consider the two programs P and Q in Figure 7.6. Suppose z and w
are different variables, then it can easily be seen that for any state-predicate J , and
relation R defined by R = {(aPi, aQi) | i = 1, 2}, it holds that P vR,J Q. However,
since z and w are different variables, wP ⊆ wQ does not hold.

The following theorems state that program refinement is reflexive and under cer-
tain conditions also transitive.
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prog P
read {x, y, z}
write {x, y, z}
init b = true
assign x := x + 1 aP1

8 y := y + 1 aP2

8 z := z aP3

prog Q
read {x, y, w}
write {x, y, w}
init b = true
assign if x ≤ 15 then x := x + 1 aQ1

8 if y ≤ 20 then y := y + 1 aQ2
8 w := w + 1 aQ3

Figure 7.6: Q refines P
J

Theorem 7.2.5 Program refinement Reflexivity P ref REFL

For all P ∈ Uprog, and J ∈ Expr:

P v=,J P

Theorem 7.2.6 Program refinement Transitivity P ref TRANS

For all P1, P2, P3 ∈ Uprog, and J2, J3 ∈ Expr:

J3 ⇒ J2 ∧ wP1 ⊆ wP2 ∧ P1 vR1,J2 P2 ∧ P2 vR2,J3 P3

P1 vR1◦R2,J3 P3

J

Reflexivity, and transitivity are necessary properties of a refinement relation, in order
to make the latter suitable for the step-wise derivation of programs [Bac88]. How-
ever, our definition of refinement is not purely transitive in the sense that additional
requirements on the component programs are demanded in the premises of Theorem
7.2.6 stating transitivity of v. Suppose we want to derive program Pn+1 from P1

(n > 1) by the following sequence of refinements:

P1 vR1,J2 P2 vR2,J3 P3 vR3,J4 P4 . . . vRn,Jn+1 Pn+1

in order to conclude that

P1 vR1◦...◦Rn,Jn+1 Pn+1

we have to prove that:

• the write variables of the program Pi in intermediate step Pi vR1◦...◦Ri,Ji+1 Pi+1
are included or equal to the write variables of program Pi+1

• the predicate Ji+1 (which shall usually correspond to the strongest invariant of
the program Pi+1) must be stronger than the predicate Ji (thus the strongest
predicate of program Pi).
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Consideration of the fact that the underlying transformations of these intermediate
refinement steps are superposition, guard strengthening and atomicity refinement
(see Section 7.2.6), these requirements are very natural. Consequently, our definition
of refinement is very suitable for stepwise derivation and verification of distributed
programs in UNITY.

7.2.3 Property preservation

Safety properties p unless q, and �J , where p, q and J do not name any superposed
variable, are always preserved under refinement of two UNITY programs.

Theorem 7.2.11 P ref AND SUPERPOSE WRITE PRESERVES UNLESSe

P vR,J Q ∧ Unity.P ∧ Unity.Q ∧ ( Q`�JQ) ∧ (JQ ⇒ J)
∃W :: (wQ = wP ∪W ) ∧ (p C W c) ∧ (q C W c)

P` p unless q ⇒ Q` (JQ ∧ p) unless q

Theorem 7.2.12 P ref AND SUPERPOSE WRITE PRESERVES STABLEe

P vR,J Q ∧ Unity.P ∧ Unity.Q ∧ ( Q`�JQ) ∧ (JQ ⇒ J)
∃W :: (wQ = wP ∪W ) ∧ (p C W c)

P`�p ⇒ Q`�(JQ ∧ p)

J

The conditions (p C W c) and (q C W c), in the premises of the two theorems above,
state that the values of state-predicates p, and q do not depend on the values of the
variables in W . Note that when W is the set of variables that are superposed up on
program P , these conditions are weaker then stating that p and q do not name any
superposed variable (see Section 3.3 page 28).

Preservation of one-step progress properties (i.e. ensures ) cannot be proved un-
der our definition of refinement. Fortunately, preservation of reach and convergence
properties can be proved, and in most situations these are all that are required.

Figure 7.7 shows the theorems stating verification conditions under which general
progress properties are preserved by refinements. Theorem 7.2.7 is a generalisation of
the theorem given in [Sin93] mentioned earlier in Section 7.1.3. It states verification
conditions for property preservation not only under strengthening the guard of one
action in a program, but under multiple compositions of guard strengthening, super-
position and atomicity refinements on various actions in the program. Informally this
theorem states that when a UNITY program Q refines P with respect to relation R
and J , then the progress properties p � q and p   q under the stability of predicate
JP in program P , are preserved under the stability of predicate JP ∧ JQ in program
Q, provided that the following verification conditions hold:
• (JP ∧ JQ) is stable in Q.
• (JP ∧ JQ) implies J
• p nor q depend on the values of the variables in W .
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Let ≺ be a well-founded relation over some set A, and M ∈ State→A.

Theorem 7.2.7 P ref SUPERPOSE AND WF FUNC PRESERVES REACHe GEN

P ref SUPERPOSE AND WF FUNC PRESERVES CONe GEN

P vR,J Q ∧ Unity.Q ∧ ( Q`�JP ∧ JQ) ∧ (JP ∧ JQ ⇒ J)
∃W :: (wQ = wP ∪W ) ∧ (JP C W c) ∧ (wP ⊆ W c)

∀AQ : AQ ∈ aQ ∧ (∃AP :: (AP ∈ aP ) ∧ (AP R AQ)) : (guard of.AQ C wQ)
∀AP : AP ∈ aP : (JP ∧ JQ) Q` guard of.AP � (∃AQ :: (AP R AQ) ∧ guard of.AQ)
∃M :: (M C wQ) ∧ (∀k : k ∈ A : Q` (JP ∧ JQ ∧M = k) unless (M ≺ k))

∧ ∀k AP AQ : k ∈ A ∧AP ∈ aP ∧AP R AQ :
Q` (JP ∧ JQ ∧ guard of.AQ ∧M = k) unless (¬(guard of.AP ) ∨M ≺ k)

((JP P` p� q) ⇒ (JP ∧ JQ Q` p� q)) ∧ ((JP P` p q) ⇒ (JP ∧ JQ Q` p q))

Theorem 7.2.8 P ref SUPERPOSE PRESERVES REACHe GEN

P ref SUPERPOSE PRESERVES CONe GEN

P vR,J Q ∧ Unity.Q ∧ ( Q`�JP ∧ JQ) ∧ (JP ∧ JQ ⇒ J)
∃W :: (wQ = wP ∪W ) ∧ (JP C W c) ∧ (wP ⊆ W c)

∀AQ : AQ ∈ aQ ∧ (∃AP :: (AP ∈ aP ) ∧ (AP R AQ)) : (guard of.AQ C wQ)
∀AP : AP ∈ aP : (JP ∧ JQ) Q` guard of.AP � (∃AQ :: (AP R AQ) ∧ guard of.AQ)
∀AP AQ : AP ∈ aP ∧AP R AQ : Q` (JP ∧ JQ ∧ guard of.AQ) unless ¬(guard of.AP )
((JP P` p� q) ⇒ (JP ∧ JQ Q` p� q)) ∧ ((JP P` p q) ⇒ (JP ∧ JQ Q` p q))

Theorem 7.2.9 P ref SUPERPOSE AND WF FUNC PRESERVES REACHe

P ref SUPERPOSE AND WF FUNC PRESERVES CONe

P vR,J Q ∧ Unity.Q ∧ ( Q`�JP ∧ JQ) ∧ (JP ∧ JQ ⇒ J)
∃W :: (wQ = wP ∪W ) ∧ (JP C W c) ∧ (wP ⊆ W c)

∀AP AQ : AP ∈ aP ∧ AP R AQ : (JP ∧ JQ) Q` guard of.AP � guard of.AQ

∃M :: (M C wQ) ∧ (∀k : k ∈ A : Q` (JP ∧ JQ ∧M = k) unless (M ≺ k))
∧ ∀k AP AQ : k ∈ A ∧AP ∈ aP ∧AP R AQ :

Q` (JP ∧ JQ ∧ guard of.AQ ∧M = k) unless (¬(guard of.AP ) ∨M ≺ k)
((JP P` p� q) ⇒ (JP ∧ JQ Q` p� q)) ∧ ((JP P` p q) ⇒ (JP ∧ JQ Q` p q))

Theorem 7.2.10 P ref AND SUPERPOSE WRITE PRESERVES REACHe

P ref AND SUPERPOSE WRITE PRESERVES CONe

P vR,J Q ∧ Unity.Q ∧ ( Q`�JP ∧ JQ) ∧ (JP ∧ JQ ⇒ J)
∃W :: (wQ = wP ∪W ) ∧ (JP C W c) ∧ (wP ⊆ W c)

∀AP AQ : AP ∈ aP ∧ AP R AQ : (JP ∧ JQ) Q` guard of.AP � guard of.AQ

∀AP AQ : AP ∈ aP ∧ AP R AQ : Q` (JP ∧ JQ ∧ guard of.AQ) unless ¬(guard of.AP )
((JP P` p� q) ⇒ (JP ∧ JQ Q` p� q)) ∧ ((JP P` p q) ⇒ (JP ∧ JQ Q` p q))

Figure 7.7: Preservation of � and   properties.
J
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• the guards of those actions AQ of Q that are related by R to one or more actions
from P are confined by the write variables of Q.

• for all actions AP of program P ; if the guard of AP holds in Q, then eventually
there will exists an action AQ of Q that is related to AP by R, and the guard
of which becomes true in Q. Consequently, if AP can make progress in P , then
eventually there exists at least one action of AQ of Q that, when executed in Q,
can make the same progress on the write variables of P as AP does when executed
in P .

Note that this requirement is not enough to guarantee that AQ indeed makes
the same progress as AP , since between the point in time that the guard of AQ

becomes true, and the actual execution of AQ it is possible that the guard of AQ

is prematurely falsified and no progress is made by AQ whatsoever. The next (and
last) verification condition states that this premature falsification of the guard of
AQ cannot happen infinitely and hence ensures that eventually AQ will make the
same progress as AP on the write variables of program P .

• for all actions AP of program P and those actions AQ of Q that are related to
AP by R, there exists a function M that is non-increasing with respect to some
well-founded relation ≺, such that: if the guard of AQ is true and M equals some
value k at any point during the execution of Q, then either:
• the guard of AP always holds, the value of M always remains k, and the

guard of AQ continues to hold forever, so both actions can make the same
progress;

• eventually M decreases or the guard of AP becomes false, but at least until
this happens, M remains k and the guard of AQ continues to hold.

Consequently, if the guard of AQ is prematurely falsified while the guard of AP

still holds, then we know that the value of M has decreased. By the previous
verification condition we know that eventually the guard of AQ will become true
again, and hence given a chance to execute. Again, the guard of AQ can be
prematurely falsified, and we have the same process all over again. However, the
well-foundedness of ≺ guarantees that M cannot decrease infinitely, and hence
that premature falsification of the guard of AQ cannot happen infinitely.

Theorem 7.2.8 states a corollary of theorem 7.2.7. It can be proved by taking M to
be a constant function. Theorems 7.2.9 and 7.2.10 state corollaries of 7.2.7 and 7.2.8
respectively. These can be proved by using the theorem stated below.

Theorem 7.2.13 BITOTAL IMP GUARD REACH EXIST GUARD

(∃A :: bitotal.R.aP.A)
∀AP AQ : AP ∈ aP ∧ AP R AQ : J Q` guard of.AP � guard of.AQ

∀AP : AP ∈ aP : J Q` guard of.AP � (∃AQ :: (AP R AQ) ∧ guard of.AQ)
J

Note that the Theorems in Figure 7.7 state property preservation in refinements
independently from the specific program transformations that were applied.
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7.2.4 Guard strengthening and superposition refinement

Strengthening the guard of, or augmenting an assignment on an action A are action
refinements of A.

Theorem 7.2.14 augment A ref

For all A,As ∈ ACTION, J ∈ Expr, and V a set of variables:

is assign.As ∧ V 8 As ∧WF action.A ∧WF action.As
A vV,J augment.A.As

Theorem 7.2.15 strengthen guard A ref

For all A ∈ ACTION, g, J ∈ Expr, and V a set of variables:

A vV,J strengthen guard.g.A
J

Consequently, restricted union superposition and augmentation superposition on a
program P are program refinements of P .

Theorem 7.2.16 RU Superpose P ref

For all P ∈ Uprog, A ∈ ACTION, J, iA ∈ Expr:

wP 8 A
P v=,J RU S.P.A.iA

Theorem 7.2.17 AUG Superpose P ref

For all P ∈ Uprog, As ∈ ACTION, iA ∈ Expr, , and ACs ⊆ ACTION:

wP 8 A ∧ is assign.As ∧ WF action.As
∃R :: P vR,J AUG S.P.ACs.As.iA

The witness used to prove this theorem isa:
(R = f2r.(λA.(A ∈ ACs) → augment.A.As | A)).

aSee Definition A.2.3216 for the definition of the function f2r that converts a function to a relation.
J

7.2.5 Non-determinism reducing refinement

Our definition of refinement in the previous section incorporates multiple compositions
of guard strengthening and superposition program transformations, without having
to specify these individual transformations explicitly. The requirement that

∀AP AQ : AP ∈ aP ∧ AP R AQ : AP vwP,J AQ

takes care of (possibly multiple compositions of) guard strengthening and augmenta-
tion superpositions. The requirement

∀AQ : AQ ∈ aQ2 : skip vwP,J AQ
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takes care of (possibly multiple compositions of) restricted union superpositions. As
a consequence, non-determinism reducing refinements like the one presented in Section
7.2.1, can be handled by our definition of refinement. Consider again programs P and
Q from Figures 7.1106 and 7.2107 respectively. By taking R = {(Pi, Qi) | i ∈ {x, y}},
we can prove that for any J , P vR,J Q holds. The proof of this is displayed below to
give the interested reader an idea of the concepts involved; it may however be skipped.

proof of: P vR,J Q
= (rewriting with Definition 7.2.4)
∃aQ1,aQ2 :: aQ = aQ1 ∪ aQ2 ∧ bitotal.R.aP.aQ1

∧
∀AP AQ : AP ∈ aP ∧ AP R AQ : AP vwP,J AQ

∧
∀AQ : AQ ∈ aQ2 : skip vwP,J AQ

⇐ (Reduce goal using witnesses aQ and ∅ respectively)
aQ = aQ ∪ ∅ ∧ bitotal.R.aP.aQ
∧ (∀AP AQ : AP ∈ aP ∧ AP R AQ : AP vwP,J AQ) ∧ (∀AQ : AQ ∈ ∅ : skip vwP,J AQ)
⇐ (R is a bitotal; properties of ∪, ∈, and ∅)
∀AP AQ : AP ∈ aP ∧ AP R AQ : AP vwP,J AQ

= (actions of programs P and Q, definition of R)
Px vwP,J Qx ∧ Py vwP,J Qy

= (We shall prove the one for Px the other is similar; Rewrite with Definition 7.2.1)
∀s :: guard of.Qx.s ∧ J.s ⇒ guard of.Px.s
∧ ∀s, t, t′ :: (compile.Px.s.t ∧ compile.Qx.s.t′ ∧ guard of.Qx.s ∧ J.s) ⇒ (t�wP = t′ �wP )

= (guard of.Qx.s = (s.x ≤ 10∧ s.x turn), and guard of.Px.s = s.x ≤ 10)
∀s, t, t′ :: (compile.Px.s.t∧ compile.Qx.s.t′ ∧ s.x ≤ 10∧ s.x turn∧ J.s) ⇒ (t�wP = t′ �wP )
Discharge the antecedents of this goal into the assumptions after rewriting with Px and Qx

A1: compile.(GUARD.(x ≤ 10).(ASSIGN.[x].[x + 1])).s.t
A2: compile.(GUARD.(x ≤ 10 ∧ x turn).(ASSIGN.[x, x turn].[x + 1, false])).s.t′

A3: s.x ≤ 10 ∧ s.x turn ∧ J.s
Rewriting A1 and A2 with the Definition 3.4.18 of compile, Definition 3.4.13 stating the
semantics of guarded actions, Definition 3.4.16 stating the semantics of assignment, and
assumption A3 gives us:
t = (λv.(v = x) → s.x+1 | s.v)∧ t′ = (λv.(v = x) → s.x+1 | ((v = x turn) → false | s.v))
Consequently, (t�wP = t′ �wP ), which equals, (t�{x, y} = t′ �{x, y}) holds.

end of proof

Proving that the property true P` x = 0 ∧ y = 0   x = 10 ∧ y = 10 of program P
is indeed preserved by its non-determinism reducing refinement Q can be established
using Theorem 7.2.9. We already have that:

A1: true P` x = 0 ∧ y = 0   x = 10 ∧ y = 10
A2: R = {(Pi, Qi) | i ∈ {x, y}}
A3: J = (¬x turn ⇒ (y = x− 1)) ∨ (x turn ⇒ (x = y))
A3: Q`�J
A3: P vR,J Q
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prog P
read rP
write wP
init iniP
assign if (∃i : i ∈ S : g.i) then A

prog Q
read rP
write wP
init iniP
assign 8i∈S if g.i then A

Figure 7.8: Q refines P
J

Now Theorem 7.2.9, using witnesses W = {x turn} and M = 20− x− y, and taking
≺ to be < on numbers, leaves us with the following proof obligations:

• Q` (J ∧M = k) unless (M < k)
• Q` (J ∧ y < 10 ∧ ¬(x turn) ∧M = k) unless (¬(y < 10) ∨M < k)
• Q` (J ∧ x < 10 ∧ x turn ∧M = k) unless (¬(x < 10) ∨M < k)
• J Q` x < 10 � x < 10 ∧ x turn
• J Q` y < 10 � y < 10 ∧ ¬x turn

Proving these obligations is not hard, and is left to the reader. This is a small example,
and the proof-effort is not significantly reduced when we compare the proof obligations
in the bullets above with the ones in Figure 7.4. However, we found that this example
gives a good insight into the concepts that are involved when using non-determinism
reducing refinements.

7.2.6 Atomicity refinement

Since our definition of refinements is based on a bitotal relation R which can relate
one action in the original program to several actions in its refinement, our definition
of refinement allows for some kind of atomicity relation. However, preserving general
program properties, and hence not just total or partial correctness, severely constrains
the kind of atomicity refinements that may be applied. Moreover, since atomicity
refinement is not going to be used in applications presented later in this thesis, we
shall not elaborate too much on this kind of refinement. In the rest of this section we
shall present how a simple guard simplification (taken from [Sin93]), that results in a
finer grain of atomicity, can be handled within our framework of refinement.

Consider the two programs in Figure 7.8, where S is a finite set, and i does not oc-
cur free in A. Evidently, programs P and Q keep executing action A until no element
in S satisfies predicate g. Let p = if (∃i : i ∈ S : g.i)then A and q.i = if g.i then A.
It easy to prove that the relation R = {(p, q.i) | i ∈ S} is bitotal on aP and aQ, and
consequently that for any J , P vR,J Q. To determine the conditions that need to be
satisfied in order to conclude property preservation, Theorem 7.2.8113 can be used to
conclude:

∀i : i ∈ S : g.i C wQ
∀i : i ∈ S : Q` (JP ∧ JQ ∧ g.i) unless ¬(∃i : i ∈ S : g.i)

((JP P` p � q) ⇒ (JP ∧ JQ Q` p � q)) ∧ ((JP P` p   q) ⇒ (JP ∧ JQ Q` p   q))
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refinement framework

P

vR,J

Q

re-usable theory

actual proof

repair & backtrack

Figure 7.9: Reducing proof-effort and complexity.
J

for the programs P and Q as displayed in Figure 7.8. These conditions coincide with
the ones required in [Sin93].

7.3 Conclusion

We have defined a refinement relation on programs that incorporates (possibly mul-
tiple compositions of) program transformations like guard strengthening, superposi-
tion, and atomicity refinement. Moreover, we have given theorems that state property
preservation in refinements independently from the specific program transformations
that were applied. Consequently, we have a general framework of refinements that,
besides being suitable for the stepwise derivation of programs, is also efficient for the
reduction of proof-effort when proving the correctness of a class of by refinement re-
lated algorithms. To pursue the tree pruning analogy from Chapter 6 (Section 6.395)
we refer to Figure 7.9. Evidently, the intuition behind Figure 7.9 is that the use of
refinements can shorten the the actual proof of a refinement (i.e. the solid line) since
instead of proving the program from scratch we prove the simpler verification condi-
tions of one of the theorems in Figure 7.7. Moreover, the amount of time spent on
repairing and backtracking is reduced since having verified P ’s correctness we have
obtained a good feeling about the workings of the algorithms in this particular class,
and hence will it be less likely that we proceed on wrong proof-strategies.



Before a wise man ventures into a pit, he lowers a ladder – so he
can climb out.

–Mishle (Shelomo)

Chapter 8

The proof of the program is
in the representation

M any authors [LT87, LT89, Sto89, Tel89, Sch91, Len93, Cho94a, Haa94, Vaa95,
Lyn96] recognise that studying and verifying distributed algorithms is a com-
plex and time-consuming activity. Obviously, one reason for this is that dis-

tributed algorithms are inherently more difficult to understand than their sequential
counterparts. As often indicated this is, among other, caused by the presence of
non-determinism, and the necessity to deal with fairness issues.

Another significant factor, however, of the time spent on studying distributed
algorithms, can be attributed to the way distributed algorithms and their correctness
proofs are presented. This last aspect is the focus of this chapter, in which we argue
that better representation of distributed algorithms significantly influences the ease
of reasoning.

The structure of this chapter is as follows. Section 8.1 describes the class of al-
gorithms that are used throughout this chapter as a vehicle for the exemplification
of the concepts treated. Section 8.2 formalises the distributed system underlying
these algorithms, and Section 8.3 formalises asynchronous communication. Section
8.4 describes existing work that has inspired the contents of this chapter. Section
8.5 enumerates the advantages of better representations of (distributed) algorithms.
Section 8.6 formulates guidelines for a better representation of an algorithm. Section
8.7 presents the improved representations of the algorithms discussed in Section 8.1.
Section 8.8 shows a new, least-deterministic variant of the algorithms, and Section
8.9 discusses similarities with a related distributed algorithm. Section 8.10 presents
various applications of the algorithms. Section 8.11 introduces some notational con-
ventions used in Section 8.12, which discusses a refinement relation identified on the
class of algorithms. Section 8.13 presents the approach that is taken in Chapter 9
to prove the correctness of the algorithms in the class of distributed hylomorphisms.
Section 8.14 finally concludes.

119



120 Chapter 8 The proof of the program is in the representation

8.1 Distributed hylomorphisms

The class of algorithms considered in the rest of this thesis consists of what we shall
refer to as distributed hylomorphisms. The term hylomorphism originated in the Dutch
STOP project, and comes from the Greek preposition hylo(ύλη), meaning “matter”,
after the Aristotelian philosophy that form (= generated) and matter (= reduced)
are the same. A hylomorphism is defined as the composition of an anamorphism
and a catamorphism. The term anamorphism comes from the Greek preposition ana
(ανα), meaning “upwards”, and reflects the fact that an anamorphism builds up (or
generates) some kind of structure starting from scratch. In the case of our distributed
hylomorphisms, the anamorphism-part corresponds to the construction of a rooted
spanning tree in a connected network. The term catamorphism, which has been
coined by Lambert Meertens [Mee86], comes from the Greek preposition cata (κατα)
meaning “downwards”, and reflects the fact that a catamorphism walks through the
structure generated by the anamorphism in order to achieve some goal. In the case
of our distributed hylomorphisms this goal can be for example:
• propagation of information with feedback [Seg83];
• finding the ordering of all processes identities in a connected network of processes

[Cha82], and based on this performing leader election [Tel94];
• finding the configuration of a network of processes [Cha82] (e.g. global termination

detection [DS80, Fra80, Tel89, Tel94]);
• re-synchronisation [Fin79];
• computing a function of which each process holds part of the input (e.g. infimum

or summation functions) [Tel94].
Summing up, our distributed hylomorphisms are algorithms that build a rooted span-
ning tree (RST) in the connected network of processes (i.e. ana-part) and use this
RST to let the required information (i.e. the values of which the sum has to be
computed, or the feedback of the information that has to be propagated through the
network) flow from the leaves to the root of the spanning tree (i.e. cata-part).

let the information flow from leaves to root of the RST
︸ ︷︷ ︸

cata

◦ build an RST
︸ ︷︷ ︸

ana

The two example algorithms used are Tarry’s algorithm [Tar95] and Chang’s ECHO
algorithm [Cha82].

The Tarry algorithm is a traversal algorithm for arbitrary networks given by
Tarry [Tar95] in 1895.

The ECHO algorithm was introduced by Chang [Cha82] as an algorithm for
detecting simple network properties. The algorithm does occur, however, albeit in
slightly different contexts, under different names in other work. Dijkstra and Scholten
[DS80] call ECHO algorithms diffusing computations, and in their paper “design a
signalling scheme – to be superimposed on the diffusing computation proper – such
that, when the diffusing computation proper has thus terminated, the fact of this
completion will eventually be signalled back to the environment.” In [Tel94] this
algorithm is classified as a termination detection algorithm under the name “Dijkstra-
Scholten Algorithm”. Independently, Francez [Fra80] describes similar work, but
refers to ECHO as a distributed termination algorithm. Segall [Seg83] names them
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PIF algorithms, although Propagation of Information with Feedback is just one
possible application of ECHO algorithms. Tel classifies them as wave algorithms in
[Tel94], and total algorithms in [Tel89].

8.2 The formalisation of the distributed system

Since the underlying networks of the distributed hylomorphisms considered in this
thesis are connected centralised (or single source) communication networks employing
asynchronous communication, these concepts are formalised in this and the following
section.

A centralised communication network is modelled by the tuple ((P, neighs), starter),
where

(P, neighs) is a decentralised communication network (see Definition 6.2.274).

starter is a process in P that distinguishes itself from all other processes (called the
followers), in that it can spontaneously start the execution of its local algorithm
(e.g. because it is triggered by some internal event). The followers can only
start execution of their local algorithm after they have received a first message
from some neighbour.

To spare the reader from continuously looking up the precise definition of a decen-
tralised network in Section 6.274, we have expanded this definition below.

Definition 8.2.1 centralised communication network Network DEF

Network.P.neighs.starter = FINITE.P ∧ card.P > 1
∧ starter ∈ P
∧ ∀p ∈ P : neighs.p ⊆ P
∧ ∀p ∈ P, q ∈ neighs.p : p 6= q
∧ ∀p, q ∈ P : (q ∈ neighs.p) = (p ∈ neighs.q)

J

A connected network is a network in which every pair of processes is connected by a
path of communication links. Let us define the set of processes that are reachable
from processes in a set W by following at most one communication link:

Definition 8.2.2 accumulate neighbours Neighs DEF

Neighs.neighs.W = {q | ∃p :: p ∈ W ∧ q ∈ neighs.p} ∪W
J

If, for any p ∈ P, there exists a number n such that the n-fold iterated application
of the function Neighs.neighs on {p} returns P, then we can conclude that every pair
of processes in P is connected by a path of communication links. Consequently, since
starter ∈ P, the following is a valid definition of connected networks:
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Definition 8.2.3 Connected network Connected Network

Connected Network.P.neighs.starter
= Network.P.neighs.starter

∧ ∃n :: P = iterate.n.(Neighs.neighs).{starter}
J

Since we only consider communication networks that have at least two processes we
have the following property of connected networks:

Theorem 8.2.4 Connected Network IMP EXISTS neigh

Connected Network.P.neighs.starter ∧ p ∈ P
∃q :: q ∈ neighs.p

J

8.3 Modelling bi-directional asynchronous commu-
nication

The type of communication employed in a communication network is assumed to be
asynchronous, i.e. send and receive operations work on buffered channels.

To model asynchronous communication, a simple, general and re-usable theory is
developed. Each algorithm using asynchronous communication in a communication
network Network.P.neighs.starter should have the following variables.

Definition 8.3.1 ASYNC Vars

For functions nr rec, nr sent, M ∈ P→P→Var:

ASYNC Vars.P.neighs.nr rec.nr sent.M
= {nr rec.p.q | p ∈ P ∧ q ∈ neighs.p}

∪ {nr sent.p.q | p ∈ P ∧ q ∈ neighs.p}
∪ {M.p.q | p ∈ P ∧ q ∈ neighs.p}

J

• the nr rec.p.q variables indicate the number of messages p has received from q
via directed communication link (q, p).

• the nr sent.p.q variables indicate the number of messages p has sent to q via
directed communication link (p, q).

• the M.p.q variables represent the buffers that store messages in transit from p
to q.

Obviously, the types of the nr rec.p.q and nr sent.p.q variables should be num, and
that of the M.p.q variables list. Consequently, in need of the possibility to let different
variables take different types, these variables have actual type Val, and intended type
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num, num and list of Val, respectively. Consequently, any algorithm using this com-
munication theory should assume the type declaration of the communication variables
stated below. To simplify notations, we shall omit nr rec, nr sent and M as parameters
in subsequent definitions.

Definition 8.3.2 types of the communication variables ASYNC type decl

ASYNC type decl.P.neighs = ∀p, q ∈ P, s ∈ State :: is num.(s.(nr rec.p.q))
is num.(s.(nr sent.p.q))
is list.(s.(M.p.q))

J

and incorporate the following initial condition for these variables:

Definition 8.3.3 initialise the communication variables ASYNC Init

ASYNC Init.P.neighs.s = ∀p ∈ P, q ∈ neighs.p :: s.(nr rec.p.q) = NUM.0
s.(nr sent.p.q) = NUM.0
s.(M.p.q) = LIST.[]

J

The theory contains the actions send and receive, and a state-predicate mit. To
avoid any confusion, their definitions are stated below without any overloading. For
the exact definitions of the state-lifted operators (e.g. EQ ,PUT, !+!) the reader is
referred to Figure 3.123, the state-lifted constants ONE and EMPTY LIST can be found
in Definition 5.4.361.

The action send, that sends a message m from p to q is defined below. The
definition is straightforward: the message m is put in the buffer M.p.q, and process p
registers sending a message to q by incrementing the variable nr sent.p.q.

Definition 8.3.4 send a message m send DEF

send.p.q.m = ASSIGN.[M.p.q , nr sent.p.q]
.[PUT.m.(VAR.(M.p.q)) , (VAR.(nr sent.p.q))!+!ONE]

J

The state-predicate mit, the name of which is an acronym for message in transit, can
be used to check whether there is a message in transit from p to q in some state s.

Definition 8.3.5 check whether there is a message in transit mit

mit.p.q = not.(VAR.(M.p.q) EQ EMPTY LIST)
J

The receive action contains two subtleties. First, we have defined it in such a way that
it only has the desired effect when a message is indeed in transit. So the programmer
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has to ensure that this action is only executed after checking and confirming the
availability of a message to receive. Second, when receiving a message, the receiver
usually does something with the received value and stores the result somewhere. Since
we have no sequential composition of actions, we decided to parametrise receive with
the appropriate parameters such that all these effects are established simultaneously.
In other words, the receive action is parametrised with a function f and a variable v,
such that the value of the received message is assigned to variable v after function f
has been applied to it. More formally:

Definition 8.3.6 receive a message when there is one in transit receive DEF

receive.p.q.f.v = ASSIGN.[M.q.p , nr rec.p.q , v]
.[TAIL.(VAR.(M.q.p))
, (VAR.(nr rec.p.q)) !+! ONE
, f.(HEAD.(VAR.(M.q.p)))]

J

8.4 Related work

The ECHO algorithm constitutes an interesting case study because it is highly par-
allel and non-deterministic. As such, several people have already tackled the formal
verification of this algorithm in order to illustrate various formal methods. In the rest
of this section we describe some of this formal work chronologically. Less formal work
on the ECHO algorithm includes [Cha82, Seg83, Sto89, Tel89, Tel94].

Chou [Cho94a] mechanically verifies a simple variant of the ECHO algorithm
that only works on trees, and computes the sum (or any other result constructed
using a commutative, associative operator that has an identity element) of the values
that reside at the nodes of this tree. He admits that by restricting the network to
a tree, he has been spared the complexity of an enormous amount of “true nonde-
terminism”, but claims that his method can still be used when arbitrary networks
are assumed [Cho94b] (although these results have not been mechanically verified).
We are appealed by his approach of using programming logics, which is both eclec-
tic and minimalistic (he uses just whatever he finds useful of TLA and UNITY).
The verification method he proposes is what he calls an events-and-causality-based
method, in which he combines the approaches of operational and assertional reason-
ing about distributed algorithms by: (a) first, introducing an event algorithm that
is an operational representation of the causal patterns of events in the distributed
algorithm, (b) second, proving properties of the event algorithm by operationally rea-
soning about events and causality, (c) showing that the event algorithm can simulate
the distributed algorithm, and (d) finally translating the operational properties of
the event algorithm into assertional properties of the distributed algorithm using a
simulation technique [Cho93]. The underlying idea of his method is to perform as
much reasoning as possible in terms of the event algorithm, since he claims this is
more abstract and easier than assertionally reasoning about the distributed algorithm.
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Chou [Cho95] has a somewhat pessimistic view of using assertional methods based on
invariant reasoning:

the application of assertional techniques in practice is still an ad hoc, trial-
and-error process that needs a great deal of ingenuity. A good example of
this trial-and-error process is the construction of invariants, which is a
major part of any assertional proof. The invariants one finds in literature
often seem to be “pulled out of a hat” with little or no explanation as to
how they are invented.

Although we agree with Chou that in the literature indeed this often seems to be
the case, we do not go along with the conclusion that this would be inherent to
assertional verification methods. We think that the main reasons that in the literature
invariants often seem to be “pulled out of a hat” are more practical. Papers and
reports are often written after one has completely verified an algorithm, and at this
point it is usually hard to retrieve the exact line of reasoning one employed during the
verification process. One could, however, keep a “research-diary” of the steps one has
undertaken while solving the problem. But even then, papers are generally supposed
to be structured, have a certain (not too great) length, and be accessible to an as
large as possible audience. Obviously, a paper that recaptures the actual verification
process shall usually not confine to these conventions.

In response to Chou’s pessimistic view of using assertional methods, and in an
attempt to try and convince him otherwise, Vaandrager [Vaa95] verifies a variant of
the ECHO algorithm using the I/O automata model [LT87, LT89]. Vaandrager’s
proof starts by specifying the algorithm as an I/O automaton DSum using standard
precondition/effect notation [LT87, LT89]. Then a simple deterministic two-state I/O
automaton S is introduced: one state implying that the algorithm is still busy, and
one state implying that the algorithm is finished and the desired sum of all values
is residing at the correct place. Subsequently, his correctness criterion consists of
proving trace inclusion of Dsum in S (i.e. traces(DSum) ⊆ traces(S)), and deadlock-
freeness (i.e. fairtraces(DSum) ⊆ fairtraces(S)). Trace inclusion is verified as follows:
(a) a history relation from DSum to an I/O automaton DSumh is established, (b) then
an invariant is “pulled out of a hat” and used to establish a prophecy relation from
DSumh to an I/O automaton DSumhp, (c) finally, the existence of a refinement from
DSumhp to S is proved, which implies that traces(DSum) ⊆ traces(S) [LV95]. The
verification of deadlock-freeness relies on proof sketches trying to make a reasonable
case for the fact that fairtraces(DSum) ⊆ fairtraces(S) holds. Although we agree with
Vaandragers position regarding the suitability of assertional methods, we do not find
the setting of his paper very convincing and from the following quotation taken from
[Cho95] we can infer that it indeed was not:

It should be pointed out that not everyone agrees with our view that the
current assertional methods are inadequate in practice. In response to
an earlier version of this paper [Cho94b], Vaandrager [Vaa95] argues that
the current assertional methods already provide sufficient guidance for the
practical verification of distributed algorithms. This difference in opinion
can only be settled, to the extent that it can be settled, by comparing the
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proofs produced according to the two approaches. The readers are invited
to make such a comparison.

In [Cho95] – which is clearly a response to [Vaa95] – Chou again verifies the same al-
gorithm using his events-and-causality-based method, now combined with a variant of
I/O automata. Although we must admit that the proof in [Cho95] is better motivated
and more structured than the one in [Vaa95], it is our opinion – and consequently
the main issue in this chapter – that the work of Chou as well as that of Vaandrager
suffers from having a poor representation of the algorithm under consideration.

As far as we know, two other formal proofs of the same protocol exists.
- In [Hes97] essentially the same protocol is verified as the one in Chou and Vaan-
drager. Hesselink describes (and represents) the protocol using send, multicast and
delay primitives that, when triggered by some data in input queues, atomically put
data values in all output queues. He introduces an oracle to model non-determinism,
and, slightly worried about the proof sketches in [Vaa95], verifies the correctness of
the algorithm using an assertional method based on invariant reasoning in the Boyer-
Moore theorem prover [BM88]. Although Hesselink’s representation of the algorithm
is not what we consider to be a good representation (Section 8.6), Hesselink does
make an effort in specifying the basic algorithm independently from the specific ap-
plication it is going to be used for (i.e. propagation of information without feedback,
propagation of information with feedback, and summation).
- In [GS96, GMS97] an algebraic verification of the ECHO protocol is presented using
µCRL [GP94], a process algebra which allows processes parametrised with data. The
correctness of the algorithm is stated as a process equation, the proof of which consists
of a combination of algebraic and assertional techniques and has been mechanically
verified using PVS [ORSH95]. The representation of the algorithm using µCRL will
be discussed in the next section.

8.5 The representation of distributed algorithms

The representation of a subject of study can significantly influence the time and effort
needed; just imagine being forced to keep the accounts using only Roman numerals!
Obviously, this also holds for the representation of algorithms. As indicated we claim
that a better representation of distributed algorithms can significantly increase the
competence to handle their complexity. More specifically, a better representation can:

• reduce the time and effort needed to understand the functionality and properties
of the algorithm.

• increase the ability to see similarities with and differences from other algorithms,
and learn how to invent and encapsulate new algorithms.

• reduce the proof effort and complexity of correctness proofs, and consequently
the time needed to understand and trust the proof.

Surely this all sounds very nice, and few if any would disagree with these arguments.
However, the most interesting part is what is meant by better representation of algo-
rithms. One objective of this chapter is to give some pointers to what we mean by a
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var recp : integer init 0 ; (* counts number of received messages *)
fatherp : P init udef;

For the initiator p:
begin forall q ∈ neighs p do send 〈tok〉 to q ;

while recp < #neighs p do
begin receive 〈tok〉 ; recp := recp + 1 end ;

end
For non-initiators p:
begin receive 〈tok〉 from neighbour q ; fatherp := q ; recp := recp + 1 ;

forall q ∈ neighs p, q 6= fatherp do send 〈tok〉 to q ;
while recp < #neighs p do

begin receive 〈tok〉 ; recp := recp + 1 end ;
send 〈tok〉 to fatherp

end

Figure 8.1: Tel’s [Tel94] representation of the ECHO algorithm.
J

var usedp[q] : boolean init false for each q ∈ neighs p
(* Indicates whether p has already sent to q *)

fatherp : P init udef;

For the initiator p only, execute once:
begin fatherp := p ; choose q ∈ neighs p ;

usedp[q] := true ; send 〈tok〉 to q
end

For each process p, upon receipt of 〈tok〉 from q0:
begin if fatherp = udef then fatherp := q0 ;

if ∃q ∈ neighs p : (q 6= fatherp ∧ ¬usedp[q])
then begin choose q ∈ neighs p \ {fatherp}

with ¬usedp[q]) ;
usedp[q] := true ; send 〈tok〉 to q

end
else begin usedp[fatherp] := true ;

send 〈tok〉 to fatherp

end
end

Figure 8.2: Tel’s [Tel94] representation of the Tarry algorithm.
J
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Internal: MSG
REPORT

Output: RESULT
State Variables: busy: V→Bool

par: V→E
total: V→M
cnt: V→Int
mq: E→M∗

Init: ∧∀v : ¬busy[v]
∧∀e : mq[e] = if e=e0 then append(0,empty) else empty

MSG(e : E, m : M)
Precondition:

v = target(e) ∧ m = head(mq[e])
Effect:

mq[e] := tail(mq[e])

if ¬busy[v] then busy[v] := true
par[v] := e
total[v] := weight(v)
cnt[v] := size(to(v)) - 1
for f ∈ from(v) / {e−1} do mq[f ] := append(0,mq[f ])

else total[v] := total[v] + m
cnt[v] := cnt[v] - 1

REPORT(e : E, m : M)
Precondition:

v = source(e) 6= v0 ∧ busy[v] ∧ cnt[v] = 0 ∧ e−1 = par[v] ∧ m = total[v]
Effect:

busy[v] := false
mq[e] := append(m,mq[e])

RESULT(m : M)
Precondition:

busy[v0] ∧ cnt[v0] = 0 ∧ m = total[v0]
Effect:

busy[v0] := false

Figure 8.3: Vaandrager’s [Vaa95] representation of ECHO as an I/O automaton
(DSum)

J
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better representation, and how it can be obtained. Before we continue two remarks
are in order.

First, better representation is a subjective matter. It depends on the upbringing,
foreknowledge and taste of the people involved, and it depends on the formalisms used.
For the purpose of illustration, Tel’s1 2 [Tel94] representations of ECHO and Tarry
can be found in Figures 8.1 and 8.2 respectively. Throughout [Tel94], which provides
a very good, structured and exhaustive overview of all kinds of distributed algorithms,
a Pascal-like pseudo-code is used to represent the algorithms. Pascal-like notation is
a defensible choice since, because most computer scientists are familiar with Pascal, it
makes the book accessible to a wide audience. Consider the representation of ECHO
in Figure 8.1. After some inspection it is not too hard to understand the global
workings of the algorithm. Although it is our opinion that, in order to understand the
algorithm, more time and effort must be spent than necessary, and although we are not
elated by this representation, it can be defended by referring to the taste, upbringing
and foreknowledge of the writer and his expected readers. Now, observe Tarry in
Figure 8.2. As will be shown later, ECHO and Tarry have lots of similarities, which
is by no means clear from comparing the two algorithms in Figures 8.1 and 8.2: they
employ different variables, Tarry has lots of indentation as a consequence of nested
if-then-else constructs, and the local algorithms of the followers have a completely
different structure.

The second remark we must make is that by better representation we do not
claim that more formality is the key. To illustrate this we refer to Figures 8.3. 8.4
and 8.5 that display the before mentioned representations of the ECHO algorithm
copied from [Vaa95], [Hes97], and [GS96, GMS97] respectively. The representation in
[Cho95] is similar to the one in [Vaa95]. Although the I/O-automata model, Boyer-
Moore theorem prover, and µCRL are formal methods, we, perhaps due to differences
in upbringing and taste, find it very time-consuming to understand the workings of
the algorithms thus represented. For example, from these representations, it is not
clear at all that messages are being sent and received. For one to figure this out,
one has to dive into the accompanying textual explanation. In the next section we
shall list some characteristics of what we consider to be a good representation of an
algorithm.

8.6 Better representation of algorithms: What

This section describes four characteristics of what we think to be a good representation
of an algorithm.

(1) A good representation of an algorithm reveals similarities with other similar
algorithms. Revelation of similar behaviour from the representation of algo-
rithms:

(a) creates opportunities to recognise classes of distributed algorithms, and
consequently reduces the time spent on studying separate algorithms in

1Small alterations have been made, namely the decide events have been omitted.
2udef means undefined.
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accept (signal, j, u) =
explist := explist \{j}
expcnt := expcnt - 1
value := value + u

if parent = self then
parent := j
delay (sendrep)
mcast (Nhb.self \{j}, signal, self, 0)

fi
end .
accept (sendrep)

enabling expcnt = 0
: send (parent, signal, self, value) ;

value := 0
end .

Figure 8.4: Hesselink’s representation of ECHO from [Hes97]
J

act st, st, st∗ : N× N (parameters: destination, source)
ans, ans, ans∗ : N× N× N (parameters: destination, source, value)
rep : N (parameter: value)

comm st | st = st∗

ans | ans = ans∗

Definition (Processes)

P (i, t : N, N : nSet, p, w : N, s : N) =
[s = 0] ⇒

∑

j:N
st(i, j)P (i, t, rem(j,N), j, size(N)− 1, 1)+

∑

j:N
[j ∈ N ∧ s = 1] ⇒ st(j, i)P (i, t, rem(j, N), p, w, s)+

∑

j,m:N
[s = 1] ⇒ ans(i, j,m)P (i, t + m,N, p, w − 1, s)+

∑

j:N
[s = 1] ⇒ st(i, j)P (i, t, N, p, w − 1, s)+

[i = 0 ∧N = ∅ ∧ w = 0 ∧ s = 1] ⇒ rep(t)P (i, t,N, p, w, 2)+
[i 6= 0 ∧N = ∅ ∧ w = 0 ∧ s = 1] ⇒ ans(p, i, t)P (i, t, N, p, w, 2)

Figure 8.5: The representation of ECHO in µCRL from [GS96, GMS97]
J
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these classes. (In our case this resulted in the class of distributed hylomor-
phisms, see Section 8.1.)

(b) reduces proof effort and complexity. Firstly, re-usable theory about similar
behaviour can be constructed and properties about these can be proved
first. That is, in the context of Figures 6.796 and 7.9118, more and bigger
rectangles. Consequently, correctness proofs of the algorithms can become
shorter and more elegant since the theory developed can be re-used in
the proofs of the algorithms. Secondly, similar behaviour can be proved
by similar proofs and proof-strategies. Consequently, proofs and proof-
strategies can be re-used, resulting in reduced complexity of correctness
proofs for similar algorithms. Thirdly, based on the similarities one can
construct a relation (e.g. refinement) between the algorithms and use this
relation to create theorems which give information about which properties,
under certain conditions, are shared between related algorithms.

(c) creates opportunities for inventing new algorithms. As we will show later
(Section 8.8), we have discovered a new algorithm which is a generalisation
of both ECHO and Tarry, and the discovery of which almost naturally
followed from our representations of the algorithms mentioned before.

(2) From a good representation of an algorithm one can immediately deduce some
properties of the algorithm (e.g. invariants, communication strategies). Not
only does this make them easier to understand, it also, again, reduces the com-
plexity of verification.

(3) A good representation of an algorithm avoids too many details which are non-
essential to, and hence impede with the understandability of the global workings
and strategies of the algorithm. One should try to find the minimal amount of
details necessary for capturing the main strategy of the algorithm, and abstract
from specific applications as much as possible.

(4) A good representation of an algorithm hides formalities in such a way that the
reader is gradually introduced to the different behaviours and strategies of the
algorithm. This increases pedagogical effectiveness.

8.7 Better representation of Tarry and ECHO: How

To illustrate the guidelines given in the previous section and give some pointers on
how to obtain a representation which is in compliance with these guidelines, we shall
describe how we came to better representations of ECHO and Tarry.

8.7.1 Analysing distributed algorithms

We started by analysing the algorithms. Analysing these distributed algorithms was
not a straightforward process. It consisted of playing with these algorithms, simu-
lating small executions on paper, finding invariants and other properties, detecting
similarities, and rewriting them in suitable forms. It is our opinion that this phase
is the most important when one is concerned with finding a good representation for
an algorithm. Furthermore, we found that it is important to try and find the least
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prog Skeleton of ECHO and Tarry

init (∀p ∈ P : (p = starter) 6= (idle.p))
∧ (father.starter = starter)
∧ ASYNC Init.P.neighs
∧ initΠ

assign

8q∈neighs.p if idle.p ∧ mit.q.p
(idle)

then receive.p.q.〈mes〉 ‖ father.p := q ‖ idle.p := false
8

8q∈neighs.p if ¬ idle.p ∧ mit.q.p ∧ collectingΠ.p
(col)

then receive.p.q.〈mes〉
8

8q∈neighs.p if ¬ idle.p ∧ can propagate.p.q ∧ propagatingΠ.p
(prop)

then send.p.q.〈mes〉
8

8q∈neighs.p if finished collecting and propagating.p ∧ ¬reported to father.p
(done)

then (if (q = (father.p)) then send.p.q.〈mes〉)

Figure 8.6: The skeleton of the local algorithm of process p ∈ P for distributed
hylomorphisms Π ∈ {ECHO, Tarry}.

J

deterministic variant of the algorithms by trying to find the determinism that can
be eliminated without changing the functionality of the algorithm. During these ac-
tivities, one learns much about the algorithms and gets a good feeling about their
structure and functionality, which leads to finding similarities between algorithms
and consequently a better representation.

The rest of this subsection describes the global workings of the two algorithms in
terms of similarities and differences.
Similar behaviour of Tarry and ECHO. Initially every follower is idle, the starter
is non-idle and all communication channels are empty. A follower becomes active when
it receives its very first message, and it marks the process from which it received this
first message as its father. A non-idle process proceeds with two activities. The
first being propagation, i.e. sending a message to all its neighbours except its father.
The second being collecting one message from each of its neighbours. When the
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starter has sent and received one message to and from all its neighbours (i.e. has
completed propagating and collecting), it immediately is done, whereas a follower
process p has completed propagating and collecting it first has to report to its father
prior to becoming done.
The differences between Tarry and ECHO are in the communication proto-
cols, more specifically when non-idle processes are allowed to collect or propagate
a message. In the Tarry algorithm, a non-idle process p can only propagate to a
neighbour if the last event of p was a receive event; otherwise it has to wait until it
receives something. So, in Tarry, the propagating and collecting activities strictly
alternate, and as a consequence there always will be at most one message in transit.
In the ECHO algorithm, a non-idle process p can only receive a message after p has
sent messages to all its neighbours except its father. So, the propagating activities
must be completed before collecting information from non-father-neighbours.

8.7.2 Construct UNITY programs

Based on the similarities described in Section 8.7.1, we were able to construct a
skeleton for all local algorithms (including the one for the starter) which encompasses
Tarry and ECHO. The skeleton is displayed in Figure 8.6, using UNITY notation
(the read and write sections have been omitted for readability). One can see that
the skeleton complies with the guidelines given earlier:
• By hiding formalities about the exact characterisation of the predicates that con-

stitute the program’s guards, and choosing suitable names for them, a reader can
obtain a good feeling about the global workings of the algorithm before he or she
is introduced into the precise formalisations of these predicates. Moreover, this
gradual introduction into the algorithms shall help them to understand the exact
formalisation of these predicates better and faster.

• By implicitly subsuming the communication with all neighbours within the syntax
(i.e. 8q∈neighs p), rather than stating it explicitly within the representation (i.e.
forall . . .do), the algorithm stays surveyable.

• The skeleton almost immediately reveals the similar behaviour of the algorithms as
informally described at the end of subsection 8.7.1. Furthermore, parameterising
those predicates that differ among the algorithms with the name of the algorithm,
immediately shows where the differences are.

• Some properties of both algorithms can easily be extracted from the representa-
tion. For example, after some inspection one can see that the algorithms build
some kind of spanning tree in the network, and that in both algorithms (¬idle.p)
is a stable property for all processes p.

• Following [Tel94], the skeleton abstracts from specific applications of the algo-
rithms, by leaving the contents of the messages that are being sent, and the ways
these are processed upon receipt, unspecified. More specifically, we represent the
receipt of a message by:

receive.p.q.〈mes〉 (8.7.1)
instead of

receive.p.q.h.(V.p) (8.7.2)
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With respect to Definition 8.3.6124, using (8.7.2) would be more precise and formal.
A disadvantage, however, of using (8.7.2) is that the reader can be distracted by
the parameters h and (V.p), and, in order to find out what their purpose is, has
to look up the definition of receive or read the accompanying text. Although less
formal and precise, (8.7.1) is much more intuitive, and prevents the reader from
being distracted by unnecessary details, while he or she – upon first introduction
to this algorithm – is trying to understand the global workings of the algorithm
instead of its applications.

Another advantage of abstracting from specific applications of the algorithms
is that the reader can develop his or her own feeling about possible uses of the
algorithms. This will help the reader to understand the explanation of existing
applications, and can result in ingenious new ones.

Some technicalities of the skeleton

Some design choices had to be made while developing the skeleton from Figure 8.6.
First, we decided to introduce a variable idle for each process. Consequently, by as-
suming idle to be initially false for the starter and true for the followers, we eliminated
the need to distinguish between the local algorithms of the starter and the followers.

Second, we added the initial condition father.starter = starter. The reason for this
will be explained in the next chapter, where the formal proofs of the algorithms are
described.

Finally, the done actions of the algorithm, which are actually one action for each
process, are modelled by a set of actions:

8q∈neighs p if finished collecting and propagating.p ∧ ¬ reported to father.p
then (if (q = (father.p)) then send.p.q.〈mes〉)

instead of just by

if finished collecting and propagating.p ∧ ¬ reported to father.p
then send.p.(father.p).〈mes〉

The reason for this is that a program that includes this last action cannot be proved to
be well-formed according to Definition 4.3.143. Proving well-formedness of a UNITY
program includes proving the syntactic requirement that actions should only write to
the declared write variables. In the case of the action above this results in the proof-
obligation that nr sent.p.(father.p) is a write variable, which only holds when p ∈ P
and father.p ∈ neighs.p. Although father.p ∈ neighs.p shall hold during any execution
of the program (i.e. it is a semantic property) we cannot prove this at a syntactical
level. Consequently, we are forced to model the done actions for each process as a
set of actions of which only one eventually has an enabled guard.

The last technicality raises an important point. Although almost any program-
ming notation has shortcomings which can prevent one from constructing certain nice
representations, this is no reason to give up on good representations altogether. One
just has to try to work around these shortcomings. To illustrate this, and to stress
that we do not promote UNITY as the best notation to use, we refer to Figure 8.7
which depicts a UNITY representation of the ECHO algorithm that does not have
any of the characteristics listed in Section 8.6.
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if idle.p ∧ ∃q ∈ neighs.p : M.q.p 6= []
then (λq. father.p, idle.p, nr rec.p.q, 〈mes〉, M.q.p

:= q, false, nr rec.p.q + 1, hd.(M.q.p), tl.(M.q.p)
) (εq. q ∈ neighs.p ∧ (M.q.p 6= []))

8

if ¬ idle.p ∧ ∃q ∈ neighs.p : M.q.p 6= []
∧ (∀q ∈ neighs.p : ((q 6= father.p) ⇒ (nr sent.p.q = 1)))

then (λq. nr rec.p.q,〈mes〉, M.q.p := nr rec.p.q + 1, hd.(M.q.p), tl.(M.q.p)
) (εq. q ∈ neighs.p ∧ (M.q.p 6= []))

8

if ¬ idle.p ∧ ∃q ∈ neighs.p : q 6= father.p ∧ nr sent.p.q = 0
then (λq. nr sent.p.q, M.p.q := nr sent.p.q + 1, 〈mes〉 : M.p.q

) (εq. q ∈ neighs.p ∧ q 6= father.p ∧ nr sent.p.q = 0)
8

if ¬ idle.p ∧ nr sent.p.(father.p) = 0 ∧ (∀q ∈ neighs.p : nr rec.q.p = 1)
∧ (father.p ∈ neighs.p) ∧ (∀q ∈ neighs p : q 6= father p ⇒ nr sent.p.q = 1)

then nr sent.p.(father.p), M.p.(father.p)
:= nr sent.p.(father.p) + 1, 〈mes〉 : M.p.(father.p)

Figure 8.7: A bad representation of the ECHO algorithm
J

Capturing the similarities

Besides the similarities revealed by the skeleton in Figure 8.6132, the analysis also
teaches us that:

• when a process is collecting this implies that it has not yet received messages
from all its neighbours;

• when a process is propagating this implies that it has not yet sent to all its
neighbours that are not its father;

• p can propagate to q when p has not yet sent to q, and q is not its father;
• when a process is finished collecting and propagating, then it has received from

all its neighbours and it has sent to all its non-father-neighbours;
• when a process has not yet reported to its father, it has not yet sent a message

to its father;
• when a process p is done it has sent and received a message to and from all of

its neighbours (i.e. including its father).

To capture these similarities we introduce the following state-predicates3: (Definitions
8.7.1136 through 8.7.7136):

3Note the overloading, see Table 3.227.
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Definition 8.7.1 received from all neighbours rec from all neighs

rec from all neighs.p = ∀q ∈ neighs.p : nr rec.p.q = 1

Definition 8.7.2 sent to all non-father-neighbours sent to all except f

sent to all non fathers.p = ∀q ∈ neighs.p : (q 6= father p) ⇒ (nr sent.p.q = 1)

Definition 8.7.3 p can propagate to q cp

can propagate.p.q = (nr sent.p.q = 0) ∧ (q 6= father.p)

Definition 8.7.4 finished collecting and propagating

finished collecting and propagating.p
= rec from all neighs.p ∧ sent to all non fathers.p

Definition 8.7.5 reported to father reported to f

reported to father.p = (nr sent.p.(father.p) = 1)

Definition 8.7.6 sent to all neighbours sent to all neighs

sent to all neighs.p = ∀q ∈ neighs.p : nr sent.p.q = 1

Definition 8.7.7 done

done.p = rec from all neighs.p ∧ sent to all neighs.p

J

Note that for the specific implementations of ECHO and Tarry, the nr rec.p.q vari-
ables for process p could have been replaced by one variable nr rec.p (analogous to
Tel’s recp) which increments each time a message is received. The disadvantages are
twofold.

First, the rec from all neighs predicate has to be changed to nr rec.p = #neighs
p, which is not as informative as the characterisation given above in that the latter,
besides stating that #neighs messages have been received, also states that exactly one
message has been received from each neighbour.

Second, the communication theory would not be as re-usable as it is now, since it
would not be possible to use it for algorithms that need to keep track of the source
of an incoming message.

Handling the differences

As mentioned in section 8.7.1, Tarry and ECHO differ in when non-idle processes are
allowed to collect or propagate a message, or, in other words, in the characterisation
of the predicates collecting and propagating

In the ECHO algorithm, a non-idle process p can only receive a message, after p
has sent messages to all its non-father-neighbours. So, the propagating activities must
be completed before starting collecting from non-father-neighbours. Consequently:
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prog ECHO

init (∀p ∈ P : (p = starter) 6= (idle.p))
∧ (father.starter = starter)
∧ ASYNC Init.P.neighs

assign

8q∈neighs.p if idle.p ∧ mit.q.p
(idle)

then receive.p.q.〈mes〉 ‖ father.p := q ‖ idle.p := false
8

8q∈neighs.p if ¬ idle.p ∧ mit.q.p ∧ collecting echo.p
(col)

then receive.p.q.〈mes〉
8

8q∈neighs.p if ¬ idle.p ∧ can propagate.p.q ∧ propagating echo.p
(prop)

then send.p.q.〈mes〉
8

8q∈neighs.p if finished collecting and propagating.p ∧ ¬reported to father.p
(done)

then (if (q = (father.p)) then send.p.q.〈mes〉)

Figure 8.8: The local algorithm of process p ∈ P of the ECHO algorithm.
J

Definition 8.7.8 propagating ECHO

propagating echo.p = ¬ sent to all non fathers.p

Definition 8.7.9 collecting ECHO

collecting echo.p = ¬ rec from all neighs.p ∧ ¬ propagating echo.p
J

Instantiating Π with ECHO in Figure 8.6 specifies the whole algorithm. For ease of
reference the resulting ECHO algorithm is given in Figure 8.8

In the Tarry algorithm, a non-idle process p can only propagate to a neighbour
if the last event of p was a receive event; otherwise it has to wait until it receives
something. So, the propagating and collecting activities alternate. In order to repre-
sent this, the skeleton in Figure 8.6 needs some minor adjustments (see Figure 8.9).
We introduce a new boolean-typed variable le rec p (i.e. last event was a receive) for
every process p, which we initialise to false for all processes except the starter. Fur-
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prog Tarry

init (∀p ∈ P : (p = starter) 6= (idle.p))
∧ (father.starter = starter)
∧ ASYNC Init.P.neighs
∧ ∀p ∈ P : (p = starter) 6= (¬le rec.p)

assign

8q∈neighs.p if idle.p ∧ mit.q.p
(idle)

then receive.p.q.〈mes〉 ‖ father.p := q ‖ idle.p := false
‖ le rec.p := true

8

8q∈neighs.p if ¬ idle.p ∧ mit.q.p ∧ collecting tarry.p
(col)

then receive.p.q.〈mes〉 ‖ le rec.p := true
8

8q∈neighs.p if ¬ idle.p ∧ can propagate.p.q ∧ propagating tarry.p
(prop)

then send.p.q.〈mes〉 ‖ le rec.p := false
8

8q∈neighs.p if finished collecting and propagating.p ∧ ¬reported to father.p
(done)

then (if (q = (father.p)) then send.p.q.〈mes〉 ‖ le rec.p := false )

Figure 8.9: The local algorithm of process p ∈ P of the Tarry algorithm.
J

thermore, we add the assignments (le rec.p := true) and (le rec.p := false) to the then
clauses of (col) and (prop) respectively. Consequently, for non-idle processes p, the
value of le rec p indicates whether the last event of p was a receive event. Finally, we
characterise the collecting and propagating predicates as follows:

Definition 8.7.10 propagating Tarry

propagating tarry.p = ¬ sent to all non fathers.p ∧ (le rec.p)

Definition 8.7.11 collecting Tarry

collecting tarry.p = ¬ rec from all neighs.p ∧ ¬(le rec.p)
J
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prog PLUM

init (∀p ∈ P : (p = starter) 6= (idle.p))
∧ (father.starter = starter)
∧ ASYNC Init.P.neighs

assign

8q∈neighs.p if idle.p ∧ mit.q.p
(idle)

then receive.p.q.〈mes〉 ‖ father.p := q ‖ idle.p := false
8

8q∈neighs.p if ¬ idle.p ∧ mit.q.p ∧ collecting plum.p
(col)

then receive.p.q.〈mes〉
8

8q∈neighs.p if ¬ idle.p ∧ can propagate.p.q ∧ propagating plum.p
(prop)

then send.p.q.〈mes〉
8

8q∈neighs.p if finished collecting and propagating.p ∧ ¬reported to father.p
(done)

then (if (q = (father.p)) then send.p.q.〈mes〉)

Figure 8.10: The local algorithm of process p ∈ P of the PLUM algorithm.
J

Figure 8.9 depicts our representation of Tarry. As the reader can see, similarities
between ECHO and Tarry are immediately recognisable upon looking at the algo-
rithms.

8.8 A least deterministic version: PLUM

From our representations of ECHO and Tarry we almost naturally came up with a
less deterministic variant of the algorithms, which is also a distributed hylomorphism.
The new algorithm, which we have named the PLUM4 algorithm, allows a process to
freely merge its propagating and collecting actions as long as it has not yet received
messages from all its neighbours, and it has not yet sent to all its neighbours that are

4This name originated at the Marktoberdorf Summerschool 1996 over several glasses of plum
wine.
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not its father. The characterisation of the propagating and collecting predicates for
this specific algorithm are:

Definition 8.8.1 propagating PLUM

propagating plum.p = ¬ sent to all non fathers.p

Definition 8.8.2 collecting PLUM

collecting plum.p = ¬ rec from all neighs.p
J

Substituting Π for PLUM in Figure 8.6, together with these characterisations, con-
stitutes the PLUM algorithm. For ease of reference the whole algorithm is displayed
in Figure 8.10.

8.9 Similarities with other algorithms: DFS

Another distributed hylomorphism that has a close relationship with Tarry, is the
classical Depth First Search (DFS) algorithm [Che83, Tel94]. The characterisation
of the propagating and collecting predicates for the DFS algorithm are identical to
those of Tarry.:

Definition 8.9.1 propagating DFS

propagating dfs.p = propagating tarry.p

Definition 8.9.2 collecting DFS

collecting dfs.p = collecting tarry.p
J

The difference with Tarry is in the lesser freedom to choose a neighbour to send a
message to in the propagating phase. More specifically, for a non-idle process p in its
propagating phase (i.e. there are still non-father-neighbours to which p has not yet
sent) whose last event was receiving a message from some neighbour q:
• if p can propagate a message back to q, i.e. q is not p’s father, and p has not yet

sent to q, then p has to send a message back to this process q
• otherwise it can act like in Tarry, and just pick any non-father-neighbour to

which it has not yet sent a message (i.e. to which it can propagate)

In order to be able to formalise and check these conditions each process in the DFS
algorithm, needs to remember the identity of the sender of its last incoming message.
In order to make this possible, some minor adjustments have to be made to the local
algorithms from Figure 8.9. First, we introduce a new variable lp rec.p (last process of
which p has received a message) for every process p. Second, we add the assignment
(lp rec.p := q) to the then clauses of (idle) and (col). Finally, we split up the
propagating phase of all processes p, into

• (prop lp rec): propagating messages to the process p has received its last
message from if this is allowed, (i.e. can propagate.p.q ∧ q = lp rec.p). (Note
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prog DFS

init (∀p ∈ P : (p = starter) 6= (idle.p))
∧ (father.starter = starter)
∧ ASYNC Init.P.neighs
∧ ∀p ∈ P : (p = starter) 6= (¬le rec.p)

assign

8q∈neighs.p if idle.p ∧ mit.q.p
(idle)

then receive.p.q.〈mes〉 ‖ father.p:=q ‖ idle.p:=false
‖ le rec.p:=true ‖ lp rec.p:=q

8

8q∈neighs.p if ¬ idle.p ∧ mit.q.p ∧ collecting dfs.p
(col)

then receive.p.q.〈mes〉 ‖ le rec.p:=true ‖ lp rec.p:=q
8

8q∈neighs.p if ¬ idle.p ∧ cp.p.q ∧ propagating dfs.p ∧ q = lp rec.p
(prop lp rec)

then send.p.q.〈mes〉 ‖ le rec.p:=false
8

8q∈neighs.p if ¬ idle.p ∧ cp.p.q ∧ propagating dfs.p ∧ ¬(cp.p.(lp rec.p))
(prop not lp rec)

then send.p.q.〈mes〉 ‖ le rec.p:=false
8

8q∈neighs.p if finished collecting and propagating.p ∧ ¬reported to father.p
(done)

then (if (q = (father.p)) then send.p.q.〈mes〉 ‖ le rec.p:=false)

(NB: can propagate is abbreviated by cp)

Figure 8.11: The local algorithm of process p ∈ P of the DFS algorithm.
J
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that similar to the (done)-actions this cannot be modelled by one action, but
has to be modelled by a set of actions.)

• (prop not lp rec): propagating messages to an arbitrary neighbour q for
which it holds that can propagate.p.q, if it is not allowed to send a message to
lp rec.p (i.e. ¬(can propagate.p.(lp rec.p))).

Figure 8.11 depicts our representation of DFS. Again, differences and similarities with
ECHO, Tarry, and PLUM are immediately visible. Moreover, DFS can be seen
as the most deterministic algorithm of the four algorithms mentioned in this chapter,
since almost all non-determinism has been eliminated.

8.10 Applications of distributed hylomorphisms

As indicated, distributed hylomorphisms can be used for various applications like:
− propagation of information with feedback,
− and the computation of summation functions of which each process in the network

holds part of the input.
Precise discussion of these applications, however, does not allow us to leave the con-
tents of the messages that are being sent, and the ways these are processed upon
receipt, unspecified. Consequently, we have to make the representation of our al-
gorithms more precise. The most general way to do this, is by parametrising the
algorithms in such a way that specific applications can be defined as instantiations of
the underlying algorithm. Then we are still able to abstract from specific applications
of the algorithm by universal quantification over its arguments. From the discussion
in Section 8.7.2 we can deduce that, in order to make the algorithms suitable for the
characterisation of specific applications, they will have to be parametrised by:
• a state-expression iA, which can be used to specify an additional application

specific initial condition
• a function h ∈ P→Expr→Expr, that, given a process p, specifies how p should

handle messages upon receipt
• a function prop mes ∈ P→Expr, that, given a process p, specifies what message

p should send in its propagating phase
• a function done mes ∈ P→Expr, that, given a process p, specifies which message

p finally has to be sent to its father
Moreover, additional variables ({V.p | p ∈ P}) are needed to store the results of receiv-
ing and processing messages. Figure 8.12 shows the result for the PLUM algorithm;
analogous adjustments have to be made for the ECHO, Tarry, and DFS algorithm.

The subsections below discuss the above mentioned applications of distributed
hylomorphisms for a connected communication network, and all implicitly assume
the validity of Connected Network.P.neighs.starter.

8.10.1 Termination of distributed hylomorphisms

Termination of distributed hylomorphisms means that when the algorithm is started
in the initial state, eventually each process will reach the situation in which it neither
sends nor receives any more messages, and all communication channels will be empty.
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PLUM.iA.h.prop mes.done mes

=

prog PLUM

init (∀p ∈ P : (p = starter) 6= (idle.p))
∧ (father.starter = starter)
∧ ASYNC Init.P.neighs
∧ iA

read ASYNC Vars.P.neighs ∪ {idle.p | p ∈ P} ∪ {father.p | p ∈ P} ∪ {V.p | p ∈ P}

write ASYNC Vars.P.neighs ∪ {idle.p | p ∈ P} ∪ {father.p | p ∈ P} ∪ {V.p | p ∈ P}

assign

8p∈P

8q∈neighs.p if idle.p ∧ mit.q.p
(idle)

then receive.p.q. (h.p).(V.p) ‖ father.p := q ‖ idle.p := false
8

8q∈neighs.p if ¬ idle.p ∧ mit.q.p ∧ collecting plum.p
(col)

then receive.p.q. (h.p).(V.p)
8

8q∈neighs.p if ¬ idle.p ∧ can propagate.p.q ∧ propagating plum.p
(prop)

then send.p.q. (prop mes.p)
8

8q∈neighs.p if finished collecting and propagating.p ∧ ¬reported to father.p
(done)

then (if (q = (father.p)) then send.p.q. (done mes.p) )

Figure 8.12: The PLUM algorithm, parametrised with iA ∈ Expr, h ∈ P→Expr→Expr,
prop mes ∈ P→Expr, and done mes ∈ P→Expr

J
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Termination of a distributed hylomorphism is independent of the contents of the
messages that are being sent and how these are processed upon receipt. Consequently,
the correctness criterion for Π ∈ {PLUM, ECHO, Tarry, DFS} can, for some
invariant JΠ of Π, be specified as:

Specification 8.10.1 HYLO Π

∀iA, h, prop mes, done mes ::

JΠ Π.iA.h.prop mes.done mes ` ini(Π.iA.h.prop mes.done mes)
 
(∀p : p ∈ P : done.p)

J

Evidently, once this correctness criterion is proved for some invariant JΠ of Π, it can
be inferred for all specific iA, h, prop mes, and done mes. As will be shown in sub-
sequent sections, this significantly reduces the proof effort for specific applications of
our base algorithms. The precise characterisation of the invariants JΠ (Π ∈ {PLUM,
ECHO, Tarry, DFS}) will be constructed in the next chapter and are left unspeci-
fied here, for now it is enough to know that JΠ is an invariant of Π with which is it
is possible to prove Specification 8.10.1.

8.10.2 Propagation of information with feedback

Propagation of information with feedback (PIF) is the problem [Seg83] of broadcasting
a piece of information I to all processes in a connected network in such a way that
all the processes “know” when they have finished participating in the broadcast, one
process in particular (the starter) “knows” that the broadcast is completed, and upon
completion all processes own the piece of information I. A process p “knows” that
it has finished participating in the broadcast when it has received and sent messages
from and to all its neighbours, i.e. when done.p. Moreover, when the starter is done it
“knows” that the broadcast is completed. To make Π suitable for the PIF application,
instantiating Π such that:
• the starter initially has I stored in its local variable (V.starter)
• in the (prop) phase of process p, the value stored in (V.p) is sent
• upon receipt of a message m in the (idle) phase of process p, this value is copied

to variable V.p.
• the messages received in the col phases are discarded
• the contents of the messages sent in the done phase remains unspecified

More formally, this is expressed by:

Definition 8.10.2
For arbitrary done mes ∈ process→Expr:

PIFΠ = Π.(λs. ((s ◦ V ).starter) = I).id.(λp. VAR.(V.p)).done mes
J
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The formal specification of PIF applications reads:

Specification 8.10.3

(JΠ ∧ JPIF) PIF Π` iniPIF Π   (∀p : p ∈ P : done.p) ∧ (∀p : p ∈ P : (V.p) = I)
J

where JPIF is some invariant of PIFΠ stating additional safety behaviour. Using the
fact that PIFΠ is an instantiation of Π, the correctness criterion above can easily be
proved by applying the following decomposition strategy:

(JΠ ∧ JPIF) PIFΠ` iniPIFΠ   (∀p : p ∈ P : done.p) ∧ (∀p : p ∈ P : (V.p) = I)
⇐ (  Substitution (4.6.350) and 8.10.2 (i.e. iniPIFΠ includes iniΠ))

(JΠ ∧ JPIF) PIFΠ` iniΠ ∧ iniPIFΠ

 
(∀p : p ∈ P : done.p) ∧ (∀p : p ∈ P : (V.p) = I)

⇐ (  Conjunction (4.5.1949) and   Stable Strengthening (4.6.950))
JΠ PIFΠ` iniΠ   (∀p : p ∈ P : done.p)
∧
PIFΠ` � JΠ ∧ JPIF

∧
(JΠ ∧ JPIF) PIFΠ` iniPIFΠ   (∀p : p ∈ P : (V.p) = I)

⇐ (Definition 8.10.2, Specification 8.10.1 proves the first conjunct)
( PIFΠ` � JΠ ∧ JPIF)
∧
(JΠ ∧ JPIF) PIFΠ` iniPIFΠ   (∀p : p ∈ P : (V.p) = I)

These last two conjuncts are application-specific.

8.10.3 Computation of summation functions

Suppose that every process p ∈ P in the network has a unique local variable that
stores some data value. The distribution of local variables in the network in given by
a function V : P→Var, and consequently, in any state s the distribution of local data
values is given by (s ◦ V ).

Computation of a summation function in such a network is based upon a commu-
tative monoid5 (⊕, e), a function f ∈ P→Val, and is defined by:

Definition 8.10.4 Computation of summation SUM

SUM.⊕.e.f .P = foldr.e.⊕.(map.f .(s2l.P))
J

Suppose (⊕,e) is a commutative monoid. It is straightforward [Cho94a, Tel94, Vaa95,
Hes97, GS96, GMS97] to modify the algorithms from Figures 8.8 through 8.11 such

5A commutative, associative operator ⊕ with an identity element e.
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that the result of SUM.⊕.e.V .P is computed and eventually resides at the starter (i.e.
is stored in the variable V .starter). Instantiate Π such that:
• D0 contains the initial distribution of the data values
• in the (prop) phase of process p, e is sent
• in the (done) phase of process p, VAR.(V.p) is sent
• upon receiving a message m in the (idle) and (col) phase, this value m is ⊕-ed

to the data value that resides in (V.p), and the result is stored in (V.p).
Let us denote the specific SUM-application of Π by SUMΠ.

Definition 8.10.5 SUM Π

SUMΠ = Π.(λs. D0 = (s ◦ V ))
.(λp m. BI APPLY.⊕ .(VAR.(V.p)).m)
.(λp. CONST.e)
.(λp. VAR.(V.p))

J

The formal specification of these summation algorithms, stating the correctness cri-
terion they should satisfy, reads:

Specification 8.10.6 Π SUMMATION SPEC

MONOID.⊕ .e ∧ COMMUTATIVE.⊕
JΠ ∧ JS SUMΠ` iniSUMΠ   (V.starter) = SUM.⊕ .e.D0.P

J

where JS is some invariant stating additional safety behaviour of SUMΠ. Proving
this correctness criterion for SUMΠ, in such a way that progress properties already
proved for Π are inherited, can now be done using the following strategy. Suppose
(⊕, e) is a commutative monoid:

JΠ ∧ JS SUMΠ` iniSUMΠ   (V.starter) = SUM.⊕ .e.D0.P
⇐ (  Substitution (4.6.350), and   Stable Strengthening (4.6.950))

JΠ SUMΠ` iniΠ   (∀p : p ∈ P : done.p)
∧
SUMΠ`�(JΠ ∧ JS)
∧
JΠ ∧ JS ∧ (∀p : p ∈ P : done.p) ⇒ (V.starter) = SUM.⊕ .e.D0.P

⇐ (Definition 8.10.5, and Specification 8.10.1)
SUMΠ`�(JΠ ∧ JS)
∧
JΠ ∧ JS ∧ (∀p : p ∈ P : done.p) ⇒ (V.starter) = SUM.⊕ .e.D0.P

Consequently, the only thing left to do is find the characterisation of invariant JS that
establishes the last conjunct. Note that this proof strategy is not ad hoc, and neither
are invariants “pulled out of a hat”. The proof strategy is based and invented as to
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establish inheritance of already proven facts about the underlying algorithm (i.e. Π).
The invariant JS , still left unspecified up to this point, has to be constructed so as
to satisfy the second conjunct of the derivation above. Although some ingenuity is
required in order to come up with this invariant, its construction is guided by the
availability of information on its use within the process of verifying the correctness
criterion.

The thought behind the construction of the invariant JS is that any message sent
during the execution of the algorithm is:
• either e (in the prop phases), or
• the data value (V.p) residing at some process p (in the done phases). However,

after sending (V.p) process p will be done.
Hence, since e is the identity element of ⊕, the desired sum SUM. ⊕ .e.D0.P will, in
any state s, be: the sum of values that reside at the processes that are not done,
added to the sum of values that are in transit in s. Thus we define JS to be the
following state-predicate:

Definition 8.10.7 Invariant SUM

JS , λ s. ( SUM.⊕ .e.D0.P
= (s ◦ V ).starter
⊕
SUM.⊕ .e.(s ◦ V ).{p | p ∈ P ∧ (p 6= starter) ∧ ¬done.p}
⊕
(the values in the communication channels)

)
J

Using this invariant, we have to prove:

Theorem 8.10.8 all done IMP starter has SUM

MONOID.⊕ .e ∧ COMMUTATIVE.⊕
JΠ ∧ JS ∧ (∀p : p ∈ P : done.p) ⇒ (V.starter) = SUM.⊕ .e.D0.P

J

and, finally, we have to prove:

Theorem 8.10.9 STABLEe Invariant SUM Π

SUM Π`�(JΠ ∧ JS)
J

Note that invariant JΠ is still unspecified at this point, and its precise characterisation
is not needed to be able to derive a proof strategy for the summation application.
Consequently, any instantiation of PLUM, ECHO, Tarry and DFS algorithms that
maintains safety property JS can be used to compute the sum. This means that not
only do the enhanced representations increase the readability of the algorithms, they
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∀A ∈ {idle, col, prop, done}, p ∈ P, q ∈ neighs.p

R plum echo.(Aplum.p.q).(Aecho.p.q)
R plum tarry.(Aplum.p.q).(Atarry.p.q)
R tarry dfs.(Atarry.p.q).(Adfs.p.q)

PLUM

ECHO

Tarry

DFS

(a) (b)

Figure 8.13: (a) refinement relation on PLUM, ECHO, Tarry, and DFS, (b) bitotal
relations

J

also clearly separate the progress and safety properties. Hence, the correctness of an
application of one of these algorithms (which consists of an extension of the algorithm)
can be proved by verifying the safety property of the extension and inheriting the
progress proof (including invariant JΠ that was needed to prove this progress) of the
original algorithm.

8.11 Some notational conventions

For the sake of readability in the subsequent sections, we introduce some notational
conventions.

For every A ∈ {idle, col, prop, done}, we use AΠ.p.q to indicate that spe-
cific action of distributed hylomorphism Π for processes p ∈ P and q ∈ neighs.p.
For the propagating actions of DFS, propdfs.p.q means either prop lp rec.p.q or
prop not lp rec.p.q.

For every Π ∈ { PLUM, ECHO, Tarry, DFS} and arbitrary iA, h, prop mes,
and done mes we write Π to denote Π.iA.h.prop mes.done mes. Therefore, theo-
rems containing Π will implicitly be universally quantified by iA, h, prop mes, and
done mes.
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The state predicate can propagate from Definition 8.7.3 is abbreviated by cp.

8.12 A refinement ordering on distributed hylomor-
phisms

Based on the analysis in the previous sections, an intuitively clear operational refine-
ment relation can be identified on PLUM, ECHO, Tarry and DFS which is based
on a specific semantic model of (UNITY) programs where execution sequences exist of
sets of sequences of possible receive and send events. The proposed refinement order-
ing is visualised with Venn-diagrams in Figure 8.13(a). Formalising this refinement
ordering within our framework of refinements (Chapter 7) is straightforward. The
bitotal relations, with respect to which the different refinements are proved, are listed
in Figure 8.13(b) (their precise characterisations can be found in Appendix D.5).
Their definitions are straightforward, in that they relate all idle, col, prop and
done actions of the original program to the corresponding actions in the refinement.
For the relation between Tarry and DFS this results in propTarry.p.q being related
to both prop lp rec.p.q and prop not lp rec.p.q. Although tedious, proving the
bitotality of these relations and subsequently verifying the refinement ordering de-
picted in Figure 8.10.3 is reasonably easy. For the sake of completeness, the resulting
refinement theorems are listed below.

Theorem 8.12.1 PLUM refines ECHO

∀J :: PLUM vR plum echo, J ECHO

Theorem 8.12.2 PLUM refines Tarry

∀J :: PLUM vR plum tarry, J Tarry

Theorem 8.12.3 Tarry refines DFS

∀J :: Tarry vR tarry dfs, J DFS
J

8.13 Correctness of distributed hylomorphisms

This section describes the approach that is taken to prove the correctness of the
algorithms in the class of distributed hylomorphisms. The main objective of the
approach is to reduce proof effort and complexity by re-using as many results as
possible.

As already set out in the previous section, if termination of a distributed hylo-
morphism has been proved, the correctness of any application of this algorithm can
be verified by using this termination property and verifying some additional safety
behaviour inherent to the specific application. Moreover, the refinement ordering
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on the distributed hylomorphisms indicates that, when termination has been proved
for PLUM, then it can be deduced for ECHO, Tarry and DFS by using one of
the property preserving theorems from our refinement framework. Consequently, the
most efficient approach to verify the correctness of all distributed hylomorphisms
(including every specific application) consists of the following steps:

(1) prove refinement relations amongst distributed hylomorphisms
(2) prove termination for the one that is refined by all others
(3) prove termination for all others using the refinement framework
(4) prove correctness of various applications

This approach is reflected in the resulting hierarchy of HOL theories, which is depicted
in Figure 8.14. This hierarchy is a continuation of the theory hierarchy in Figure
5.156, in that the refinements, actions transformations, and pvt ops theories in Figure
8.14 correspond to those in Figure 5.156.

network is the theory about centralised and decentralised connected networks de-
scribed in Section 8.2.

RST constitutes theory about rooted spanning trees, which is necessary when the
proof strategy delineated in Section 8.1 is employed during the verification of
distributed hylomorphisms. (The contents of this theory shall be discussed in
the next chapter.)

communication contains the theory about asynchronous communication from Section
8.3.

Distributed Hylomorphisms embodies definitions 8.7.1136 through 8.7.7136.

PLUM formalises the PLUM algorithm, and contains the theorem stating that it is
a well-formed UNITY program according to Definition 4.3.143. (See Appendix
D.)

PLUM INV defines and proves the invariant of PLUM. The exact formalisation of
this invariant and its construction will be described in the next chapter.

ANA PLUM contains the proof of the anamorphism part of the distributed hylomor-
phism, i.e. the construction of a rooted spanning tree.

CATA PLUM contains the proof of the catamorphism part, i.e. using the rooted
spanning tree to establish the desired result.

HYLO PLUM combines the anamorphism and catamorphism part to prove termina-
tion of PLUM.

SUM PLUM defines the specific summation application of the PLUM algorithm (Def-
inition 8.10.5), and verifies Theorems 8.10.6 through 8.10.9.

ECHO, Tarry, DFS formalise ECHO, Tarry, and DFS respectively; contain theo-
rems about their well-formedness (Definition 4.3.143); define the bitotal rela-
tions depicted in Figure 8.13(b); and verify theorems Theorems 8.12.1 through
8.12.3. (See Appendix D.)
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refinements

actions transformations

communication

network

pvt ops

RST

Distributed Hylomorphisms

PLUM

PLUM INV

ANA PLUM CATA PLUM

HYLO PLUM

SUM PLUM

ECHO

HYLO ECHO

SUM ECHO

Tarry

HYLO Tarry

SUM Tarry

DFS

HYLO DFS

SUM DFS

Figure 8.14: Theory hierarchy
J
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HYLO ECHO, HYLO Tarry, HYLO DFS prove termination of ECHO, Tarry, and
DFS respectively by using the refinement framework described in Chapter 7.

SUM ECHO, SUM Tarry, SUM DFS define the specific of summation applications of
ECHO, Tarry, and DFS respectively (Definition 8.10.5); and verify Theorems
8.10.6 and 8.10.9 by using the refinement framework described in Chapter 7.

We end this section by analysing the time spent on the various mechanical verification
activities involved in proving the correctness of each distributed hylomorphism. Since
the next chapter shall treat the formal verification activities in detail, we shall be
brief and concentrate on justifying the time spans indicated.

Verification of termination of the PLUM algorithms was the most time-consuming
part (4 months), since, starting from scratch, we had to:
− formalise the PLUM algorithm and prove its well-formedness
− construct and verify PLUM’s invariant (Jplum)
− invent the exact proof strategy and apply it
Verifying PLUM’s suitability for the computation of summation functions was done
in two days. Most of this time was spent on verification of the invariant JS (definition
8.10.7), which involved proving lots of additional theorems on lists.

However, having verified termination and summation for PLUM, the formalisations
and the correctness proofs of the the other distributed hylomorphisms became signif-
icantly easier and less time-consuming.

Formalising ECHO, Tarry, and DFS is simple, since these are defined by augment-
ing and strengthening the guards of actions from PLUM. Their precise definitions
can be found in Appendix D).

Verification of summation for ECHO was done in 1 hour. Once Theorem 7.2.12112

was used to deduce that JS is also an invariant of ECHO, the rest of the proof could
be done analogously to that of PLUM. Verification of summation for Tarry and
DFS was done analogously to that of ECHO and hence – since we already knew how
to do this – took even less time.

Verification of termination of ECHO took 3 days. Theorem 7.2.10113 was used to
deduce termination. Since no variables are superposed upon PLUM to construct
ECHO, and only the col-actions vary among PLUM and ECHO, application of
Theorem 7.2.10113 resulted in only one non-trivial proof obligation:

(Jplum ∧ Jecho) echo` guard of.colplum.p.q � guard of.colecho.p.q

for processes p ∈ P and q ∈ neighs.p, which comes down to proving:
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(Jplum ∧ Jecho) echo` ¬idle.p ∧mit.q.p ∧ ¬rec from all neighs.p
�
¬idle.p ∧mit.q.p ∧ ¬rec from all neighs.p
∧ sent to all non fathers.p

Proving this is not difficult: no additional invariant for ECHO is needed (i.e. Jecho

can be true); and the remainder of the proof turned out to be similar to a theorem
proved during the verification of termination of PLUM.

Verification of termination of Tarry took 18 days, which is six times as long as the
verification of ECHO. The reason for this is that Theorem 7.2.9113 has to be used
in order to be able to deduce termination; an application of this theorem introduces
some time-consuming verification activities:
− proving that PLUM’s invariant does not depend on the superposed variables

le rec.p
− constructing and verifying a non-decreasing function over the variables of Tarry
− verifying that for processes p ∈ P and q ∈ neighs.p:

(Jplum ∧ JTarry) Tarry` guard of.colplum.p.q � guard of.colTarry.p.q

which comes down to proving:

(Jplum ∧ JTarry) Tarry` ¬idle.p ∧mit.q.p ∧ ¬rec from all neighs.p
�
¬idle.p ∧mit.q.p ∧ ¬rec from all neighs.p
∧ ¬(le rec.p)

In order to be able to verify this it is necessary to specify and verify the invariant
Jtarry in such a way that it captures the alternating receive and send behaviour
which is inherent to Tarry.

− verifying that for processes p ∈ P and q ∈ neighs.p:

(Jplum ∧ Jtarry) tarry` guard of.propplum.p.q � guard of.proptarry.p.q

which comes down to proving:

(Jplum ∧ Jtarry) tarry` ¬idle.p ∧ cp.p.q ∧ ¬sent to all non fathers.p
�
¬idle.p ∧ cp.p.q ∧ ¬sent to all non fathers.p
∧ (le rec.p)

Proving this proof obligation is not easy: when a non-idle process p in PLUM
is allowed to send a message to q, this same process in Tarry has to wait until
it receives a message (i.e. le rec.p becomes true). Many messages may be sent
in the network until le rec.p becomes true, and consequently this proof obligation
has to be proved by a well-foundedness argument (using 4.5.1748). Fortunately,
the non-decreasing function over the variables of Tarry constructed in order to
apply Theorem 7.2.9113 could be re-used in the well-foundedness argument.
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Termination Computation of summation functions
PLUM 4 months 2 days
ECHO 3 days 1 hour
Tarry 18 days 30 minutes
DFS 8 days 30 minutes

Table 8.1: Time spent on mechanically verifying various distributed hylomorphisms
J

Verification of termination of DFS took 8 days. Tarry’s invariant could easily
be deduced for DFS using Theorem 7.2.12112. Since every prop-action of Tarry
is bitotally related to two different actions from DFS (namely prop lp rec and
prop not lp rec), 7.2.7113 has to be used to infer termination of DFS. Although
like Tarry, application of this theorem results in some non-trivial proof obligations,
these were proved with less effort, since:
− the non-decreasing function constructed for Tarry could be re-used
− no additional invariant properties had to be proved for Tarry
− verification of the proof obligations:

(Jplum ∧ JTarry) DFS` guard of.colTarry.p.q � guard of.colDFS.p.q

and

(Jplum ∧ JTarry) DFS` guard of.propTarry.p.q
�
∃A :: (A ∈ aDFS) ∧ guard of.A.p.q

was established by proofs similar to those for Tarry.

This ends the brief analysis of the verification activities involved in proving distributed
hylomorphisms. As already indicated, the next chapter shall discuss them in more
detail.

8.14 Conclusions

Analysing a class of algorithms, detecting similarities, and constructing a good rep-
resentation in such a way that

• a least deterministic variant can be invented,

• a refinement ordering can be identified,

• and the representation abstracts from specific applications,

has led to the construction of an efficient approach to verify the correctness of the
class of algorithms. To validate these claims, we have summarised the time spent on
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the various (mechanical) verification activities involved in proving the correctness of
the class of distributed hylomorphisms in Table 8.1. The table confirms that for the
class of distributed hylomorphisms

• finding the least deterministic variant and starting with verification of its ter-
mination, significantly reduces the time spent on proving the correctness of the
other distributed hylomorphisms

• and, as a consequence of the previous bullet, our framework of refinements from
the previous chapter is effective for the reduction of proof effort

• moreover, abstracting from applications reduces the complexity of their formal-
isation and verification.
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Don’t worry if you don’t immediately understand the strategy be-
hind a proof you are reading. Just try to follow the justifications
of the steps, and the strategy will eventually become clear. If it
doesn’t, a second reading of the proof might help.

– D.J. Velleman [Vel94]

Chapter 9

Formally proving the
correctness of distributed
hylomorphisms

T his chapter presents detailed formal proofs of the correctness of distributed
hylomorphisms with respect to their termination. We use the approach de-
lineated in Chapter 8, i.e. first prove termination of PLUM in Section 9.1,

and then use the refinements framework from Chapter 7 to derive termination of the
other distributed hylomorphisms (Sections 9.3 through 9.5).

To refute the statement made in [Cho95], that the construction of invariants is a
“trial-and-error” process that needs a great deal of ingenuity, we shall construct our
invariant Jplum incrementally in a demand driven way during the process of verifica-
tion. Although this results in an intuitive and structured invention of the invariant,
it also contributes to the spaciousness of this chapter.

9.1 Proving termination of PLUM

Verifying the correctness of termination for PLUM is done following the second and
third step of the UNITY methodology described in Chapter 6. The UNITY specifica-
tion, stating termination of PLUM, was already stated in the previous chapter and,
for some invariant Jplum of PLUM, reads:

Theorem 9.1.1 HYLO PLUM

∀iA, h, prop mes, done mes ::
Jplum plum.iA.h.prop mes.done mes ` ini(PLUM.iA.h.prop mes.done mes)

 
∀p : p ∈ P : done.p

J

157
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Theorem 9.1.2 Variables ignored by idle Vars IG BY IDLE

{idle.p, father.p,M.q.p, nr rec.p.q, V.p}c 8 idle.p.q

Theorem 9.1.3 Variables ignored by col Vars IG BY COL

{M.q.p, nr rec.p.q, V.p}c 8 col.p.q

Theorem 9.1.4 Variables ignored by prop Vars IG BY PROP

{M.p.q, nr sent.p.q}c 8 prop.p.q

Theorem 9.1.5 Variables ignored by done Vars IG BY DONE

{M.p.q, nr sent.p.q}c 8 done.p.q

Figure 9.1: Variables ignored by the actions from PLUM
J

This specification is refined and decomposed – using the laws of the UNITY logic
which were presented in Chapter 4 – until it is expressed in one-step progress (i.e.
ensures ) and safety (i.e. �) properties that can be proved directly from the actions
of the PLUM algorithm (see Figure 8.12143).

9.1.1 Incremental, demand-driven construction of invariants

As already stated, we shall construct our invariant Jplum incrementally in a demand
driven way during the process of refinement and decomposition. More specific, at
the begin of the refinement and decomposition, the invariant Jplum is unspecified.
Subsequently, at those points in the proof where an invariant is needed we propose a
candidate cJ i

PLUM for part of the invariant which suffices for that particular point in
the proof. After decomposition, we gather all the candidates we have proposed during
the refinement and decomposition of the initial specification, and from them deduce
the minimal invariant Jplum that implies all the proposed candidates. To give a clear
indication when a candidate for part of the invariant is proposed we shall mark this
point by:

QPPPPPPR cJ i
PLUM = . . .

Once introduced it is assumed that Jplum implies the candidate, since this shall be
ensured at the end of the decomposition. Similarly, we shall assume the stability of
Jplum throughout the whole process of refinement and decomposition. Finally, we
will call a candidate that is proposed for being part of the invariant, an invariant-
candidate.
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Theorem 9.1.6 guard of IDLE

guard of.(idle.p.q) = idle.p ∧mit.q.p

Theorem 9.1.7 guard of COL

guard of.(col.p.q) = ¬idle.p ∧mit.q.p ∧ ¬rec from all neighs.p

Theorem 9.1.8 guard of PROP

guard of.(prop.p.q)
= ¬(idle.p) ∧ (nr sent.p.q = 0) ∧ (q 6= (father.p)) ∧ ¬sent to all non fathers.p

Theorem 9.1.9 guard of DONE

guard of.(done.p.q)
= finished collecting and propagating.p ∧ ¬reported to father.p ∧ (q = (father.p))

Figure 9.2: Guards of the actions from PLUM
J

9.1.2 PLUM’s variables and actions

During the verification, we shall assume that all of PLUM’s variables are distinct.
That is, e.g. for the idle variables it is assumed that:

∀p, q ∈ P : (idle.p = idle.q) = (p = q)

Similar properties are assumed for the V, father, nr rec, nr sent, and M variables.
Moreover, we assume that the various kinds of variables are different, e.g. for the idle
variables we assume:

∀p, q, r ∈ P : (idle.p 6= V.q) ∧ (idle.p 6= father.q) ∧ (idle.p 6= nr rec.q.r)
(idle.p 6= nr sent.q.r) ∧ (idle.p 6= M.q.r)

Again similar properties are assumed for the V, father, nr rec, nr sent, and M vari-
ables. The HOL definition capturing these properties of PLUM’s variables is called
distinct PLUM Vars, we do not present it here, since obviously it is very tedious and
takes up a lot of space. It can be found in Appendix D in Definition D.1.4254.

Another assumption, implicitly made during the verification activities in this chap-
ter, is the (intended) type declaration of the communication variables (see Definition
8.3.2123): ASYNC type decl.P.neighs

Theorems 9.1.2158 through 9.1.5158 indicate which variables are written by the various
actions of the PLUM algorithm. (For the definition of 8 see 3.4.2236.) Since we as-
sume the validity of distinct PLUM Vars, we know that if, for example, (p 6= p′), then
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action idle.p.q does not write to the variables idle.p′, father.p′, M.q.p′, nr rec.p′.q, and
V.p′.

For ease of referring to the guards of the various actions of PLUM, Theorems 9.1.6159

through 9.1.9159 state them.

9.1.3 Presenting proofs of unless and ensures properties

During the refinement and decomposition of the specification, various one-step safety
(i.e. unless) and progress (i.e. ensures) properties have to be verified. To enhance
the readability of their proofs, this section shall introduce the proof format for the
verification of these properties.

The proof obligations stating ensures -properties are introduced through an ap-
plication of the   Introduction (4.6.450) theorem. More specifically, applying this
theorem results in proof obligations of the form::

` (Jplum ∧ x) ensures y

Rewriting with Definitions 4.4.143 and 4.4.243 gives us:

∀A ∈ aPLUM, s, t ∈ State :
evalb.(Jplum.s) ∧ evalb.(x.s) ∧ ¬evalb.(y.s) ∧ compile.A.s.t
⇒
(evalb.(Jplum.t) ∧ evalb.(x.t)) ∨ evalb.(y.t)















unless− part

∧

∃A ∈ aPLUM : ∀s, t ∈ State :
evalb.(Jplum.s) ∧ evalb.(x.s) ∧ ¬evalb.(y.s) ∧ compile.A.s.t
⇒
evalb.(y.t)















exists− part

To prevent tedious rewriting with the definitions of unless and ensures , and repeated
discharging of the hypotheses at the left hand side of the implications, we introduce
the proof-format displayed in Figure 9.3161.

9.1.4 Some more theorems, notation and assumptions

Figure 9.4161 displays some simple theorems that turn out to be useful during the
verification, they all follow naturally from the Definitions 8.7.1136 through 8.7.7136.

During the whole process of verification, we shall assume that we have a connected
centralised communication network. i.e. Connected Network.P.neighs.starter.

Moreover, during the process of decomposition:

` and plum` abbreviate Jplum plum.iA.h.prop mes.done mes `



9.1 Proving termination of PLUM 161

` (Jplum ∧ x) ensures y

unless-part.
idle.p′.q′.s.t
the proof that is displayed here, implicitly assumes the validity of
• evalb.(Jplum.s) (and hence because of the assumed stability of Jplum (Section

9.1.1) also evalb.(Jplum.t))
• evalb.(x.s)
• ¬evalb.(y.s)
• compile.(idle.p′.q′).s.t

and aims to verify that evalb.(x.t) ∨ evalb.(y.t).
col.p′.q′.s.t dito, but then for col
prop.p′.q′.s.t dito, but then for prop
done.p′.q′.s.t dito, but then for done

exists-part: directly after the colon we shall write that action A that is used to reduce
the existential quantification.
Then, we present a proof that – under the implicit assumptions that evalb.(Jplum.s),
evalb.(x.s), and ¬evalb.(y.s)∧ compile.A.s.t – verifies that the action establishes the
desired progress (i.e. evalb.(y.t)).

Figure 9.3: The proof-format for the verification of ensures -properties
J

Theorem 9.1.10 not evalb sent 2 all except f

For all processes p ∈ P and states s ∈ State:

¬sent to all non fathers.p.s
= ∃q : q ∈ neighs.p ∧ q 6= s.(father.p) ∧ s.(nr sent.p.q) 6= 1

Theorem 9.1.11 not evalb rec from all neighs

For all processes p ∈ P and states s ∈ State:

¬rec from all neighs.p.s = ∃q : q ∈ neighs.p ∧ s.(nr rec.p.q) 6= 1

Theorem 9.1.12 finished and sent 2 f IMP sent 2 all neighs

For all processes p ∈ P and states s ∈ State:

finished collecting and propagating.p.s ∧ reported to father.p.s
sent to all neighs.p.s

Figure 9.4: Some useful theorems
J
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for arbitrary iA ∈ Expr, h ∈ P→Expr→Expr, prop mes ∈ P→Expr, and done mes
∈ P→Expr, for which hold that:

∀p, e : p ∈ P ∧ e C wPLUM : (h.p.e) C wPLUM
∀p : p ∈ P : PROP mes.p C wPLUM ∧ DONE mes.p C wPLUM

These assumptions about h, prop mes, and done mes are needed to prove that
PLUM (as it is displayed in Figure 8.12143) is a well-formed UNITY program (i.e.
satisfies the predicate Unity, see Theorem D.1.10255).

9.1.5 Refinement and decomposition strategy

The global strategy applied to decompose the specification stating termination of
distributed hylomorphisms, was already described in Section 8.1120, and is inherent
to the structure of distributed hylomorphisms:

let the information flow from leaves to root of the RST
︸ ︷︷ ︸

cata

◦ build an RST
︸ ︷︷ ︸

ana

Distributed hylomorphisms build an RST by flooding messages to all processes in
such a way that:

• when an idle process p receives its first message from q, it marks q as its father
and opens its floodgate by becoming non-idle

• non-idle processes only flood (i.e. propagate) messages to non-father-neighbours.
Consequently, the shape of the rooted spanning tree is established by the father rela-
tion, once all processes have become non-idle. The construction of the tree, however,
is finished only when

(1) every process has sent messages to all its neighbours that are not its father (i.e.
it has sent messages to all of its non-father-neighbours)

(2) all messages meant in (1) are actually received (i.e. every process has received
messages from all of its non-child-neighbours)

Requirement (1) is captured by the definition of sent to all non fathers, given earlier
in Chapter 8 (Definition 8.7.2136). Requirement (2) is, for some process p ∈ P,
characterised by the following definition:

Definition 9.1.13 received from all non-children rec from all non child

rec from all non children.p = ∀q ∈ neighs.p : (p 6= (father.q)) ⇒ (nr rec.p.q = 1)
J

this predicate states that process p has at least received messages from those neigh-
bours of which p is not the father. Thus, in other words, p has at least received
messages from all its non-child-neighbours.

Applying this global proof strategy to the initial specification results in the following
anamorphism- and catamorphism-part:

` ini(PLUM.iA.h.prop mes.done mes)   ∀p : p ∈ P : done.p



9.1 Proving termination of PLUM 163

⇐(  Transitivity (4.6.650))

` ini(PLUM.iA.h.prop mes.done mes)
 
(∀p ∈ P : ¬idle.p)
∧(∀p ∈ P : sent to all non fathers.p)
∧(∀p ∈ P : rec from all non children.p)























anamorphism− part

∧

` (∀p ∈ P : ¬idle.p)
∧(∀p ∈ P : sent to all non fathers.p)
∧(∀p ∈ P : rec from all non children.p)
 
∀p : p ∈ P : done.p























catamorphism− part

9.1.6 Verification of the anamorphism part

Decomposition of the anamorphism-part is straightforward and follows naturally
from the discussion in the previous section: first prove that the shape of the RST is
established by proving that all processes eventually become non-idle (ana 1); then
prove that all processes end the construction of the RST by sending messages to all
their non-father-neighbours (ana 2); finally prove that all messages sent in order to
construct the RST are eventually received (ana 3).

` ini(PLUM.iA.h.prop mes.done mes)
 
(∀p ∈ P : ¬idle.p)
∧(∀p ∈ P : sent to all non fathers.p)
∧(∀p ∈ P : rec from all non children.p)























anamorphism− part

⇐(  Accumulation (4.6.850), twice)

` ini(PLUM.iA.h.prop mes.done mes)
 
∀p ∈ P : ¬idle.p







ana 1

∧

` ∀p ∈ P : ¬idle.p
 
∀p ∈ P : sent to all non fathers.p







ana 2

∧

` (∀p ∈ P : ¬idle.p) ∧ (∀p ∈ P : sent to all non fathers.p)
 
(∀p ∈ P : ¬idle.p) ∧ (∀p ∈ P : rec from all non children.p)







ana 3
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The verification of ana 1

Decomposition of ana 1 proceeds by induction on the structure of the connected net-
work underlying the PLUM algorithm. That is, we prove that when a process p is
non-idle, then eventually all its neighbours will become non-idle. Consequently, from
the connectivity of the network it can be deduced that since the starter is non-idle,
eventually all processes will be non-idle.

` ini(PLUM.iA.h.prop mes.done mes)   ∀p ∈ P : ¬idle.p }ana 1
⇐(  Substitution (4.6.350), using characterisation of initial condition PLUM)

` ∀p ∈ {starter} : ¬idle.p   ∀p ∈ P : ¬idle.p
⇐(rewrite with the definition of Connected Network (8.2.3122))

` ∀p ∈ {starter} : ¬idle.p   ∀p ∈ iterate.n.(Neighs.neighs).starter : ¬idle.p
⇐(  Iterate (4.5.2149))

∀L ⊆ P :` ∀p ∈ L : ¬idle.p   ∀p ∈ Neighs.neighs.L : ¬idle.p
⇐(  Substitution (4.6.350), prepare for   Conjunction (4.5.1949))

∀L ⊆ P :` ∀p ∈ L, ∀q ∈ neighs.p : ¬idle.p∧¬idle.p   ∀p ∈ L, ∀q ∈ neighs.p : ¬idle.q
⇐(  Conjunction (4.5.1949), three times)

∀L ⊆ P, p ∈ L, q ∈ neighs.p : (` ¬idle.p   ¬idle.p) ∧ (` ¬idle.p   ¬idle.q)

The first conjunct can be proved using   Reflexivity (4.6.550), and the stability of
¬idle.p, stated below:

Theorem 9.1.14 STABLEe not idle

∀p ∈ P : plum`�¬idle.p
J

We now proceed with the second conjunct. Since q is assumed to be an arbitrary
neighbour of p, we have to make a distinction as to whether q is p’s father or not.

⇐(  Case distinction (4.6.750))
∀L ⊆ P, p ∈ L, q ∈ neighs.p :
` ¬idle.p ∧ (q = father.p)   ¬idle.q
︸ ︷︷ ︸

ana 1.1

∧ ` ¬idle.p ∧ (q 6= father.p)   ¬idle.q
︸ ︷︷ ︸

ana 1.2
Examine the first conjunct ana 1.1, we need to verify that when a process p is non-
idle, then eventually its father will be non-idle. When a process p is not idle, it has
received a message from its father. Hence its father is not idle since otherwise it would
not have been able to send a message to p. Therefore, the first conjunct should be
provable from the invariant as follows: for arbitrary p ∈ P and q ∈ neighs.p:

` ¬idle.p ∧ q = father.p   ¬idle.q
⇐(  Introduction (4.6.450))

((JPLUM ∧ ¬idle.p ∧ (q = father.p)) ⇒ ¬idle.q) ∧ ` �(JPLUM ∧ ¬idle.q)
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In order to establish this proof we introduce our first candidate for part of the invari-
ant JPLUM:

QPPPPPPR cJ 1
PLUM = ∀p ∈ P, q ∈ neighs.p : ¬idle.p ∧ q = father.p ⇒ ¬idle.q

Obviously, when JPLUM implies cJ 1
PLUM, the stability of JPLUM, and the stability of

(¬idle.q) (stated in Theorem 9.1.14) establish ana 1.1.

The second conjunct ana 1.2, states that when a process p is non-idle, then eventu-
ally its non-father neighbours will be non-idle. Evidently, when p is non-idle, it shall
eventually send a message to its non-father neighbour q; moreover, q shall eventually
receive this message and, when not already non-idle, shall become non-idle. This is
reflected in the following decomposition strategy: for arbitrary p ∈ P and q ∈ neighs.p:

` ¬idle.p ∧ q 6= father.p   ¬idle.q
⇐(  Transitivity (4.6.650))

` ¬idle.p ∧ q 6= father.p   nr sent.p.q = 1
︸ ︷︷ ︸

ana 1.2.1

∧ ` nr sent.p.q = 1   ¬idle.q
︸ ︷︷ ︸

ana 1.2.2
ana 1.2.1 can be proved using   Introduction (4.6.450), leaving us with the proof
obligations:

` �(JPLUM ∧ nr sent.p.q = 1)
∧
` (JPLUM ∧ ¬idle.p ∧ q 6= father.p) ensures (nr sent.p.q = 1)

Stability of (nr sent.p.q = 1) can be proved separately from invariant JPLUM, since,
for all p ∈ P and q ∈ neighs.p, the guards of prop.p.q and done.p.q imply that
nr sent.p.q = 0. The proof is straightforward and the resulting theorem is presented
below.

Theorem 9.1.15 STABLEe nr sent is 1

∀p, q ∈ P : plum`�(nr sent.p.q = 1)
J

Consequently,
` �(JPLUM ∧ (nr sent.p.q = 1))

⇐(� Conjunction 4.4.444)
` �JPLUM ∧ ` �(nr sent.p.q = 1)

Which is proved by the assumed stability of JPLUM, and Theorem 9.1.15 from above.

The validation of the ensures -property is below:

` (JPLUM ∧ ¬idle.p ∧ q 6= father.p) ensures (nr sent.p.q = 1)

unless-part
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idle.p′.q′.s.t
- if p 6= p′, then the variables idle.p and father.p are not written by idle.p′.q′.s.t

and thus s.(idle.p) = t.(idle.p) and s.(father.p) = t.(father.p).
- if p = p′, then (s = t) since the guard of idle.p′.q′.s.t is disabled by ¬s.(idle.p).

(see the explanation on the implicit assumptions implied by the presentation
of ensures -properties from Section 9.1.3).

col.p′.q′.s.t, prop.p′.q′.s.t, done.p′.q′.s.t do not write to the idle and father variables
(Theorems 9.1.3158 through 9.1.5158).

exists-part: prop.p.q.s.t.
In order to verify that this action indeed sends a message to its neighbour q, we have
to prove that its guard is enabled in state s. More specific (Theorem 9.1.8159) this
comes down to verifying that:

¬s.(idle.p) ∧ (s.(nr sent.p.q) = 0) ∧ (q 6= s.(father.p)) ∧ ¬sent to all non fathers.p.s

since the implicit assumptions of the presentation of ensures -properties tell us that
¬s.(idle.p), (q 6= s.(father.p)), and (s.(nr sent.p.q) 6= 1), and hence Theorem 9.1.10161

implies that ¬sent to all non fathers.p.s, the following proof obligation remains:

s.(nr sent.p.q) = 0

In order to prove this, we need to propose an additional candidate for part of the
invariant. Since we have that (s.(nr sent.p.q) 6= 1), the invariant-part that suffices
here, is a predicate stating that the number of messages a process has sent to a
neighbour is always 0 or 1.

QPPPPPPR cJ 2
PLUM = ∀p ∈ P, q ∈ neighs.p : nr sent.p.q = 0 ∨ nr sent.p.q = 1

This ends the validation of ana 1.2.1.

Using Theorem 9.1.14164, the assumed stability of JPLUM, � Conjunction 4.4.444,
and   Introduction (4.6.450), the proof obligation ana 1.2.2 can be reduced to:

` (JPLUM ∧ nr sent.p.q = 1) ensures (¬idle.q)

unless-part
idle.p′.q′.s.t, col.p′.q′.s.t do not write to the nr sent variables (Theorems 9.1.2158

and 9.1.3158).
prop.p′.q′.s.t

- If (p 6= p′) or (q 6= q′), the variable nr sent.p.q is not written.
- If (p = p′) and (q = q′), then s = t since the guard of prop.p′.q′.s.t is disabled

by (s.(nr sent.p′.q′) = 1).
done.p′.q′.s.t

- If (p 6= p′) or (q 6= q′) the variable nr sent.p.q is not written.
- Suppose (p = p′) and (q = q′).
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- If q′ 6= s.(father.p′) then the guard of done.p′.q′.s.t is disabled and hence
s = t.

- Suppose q′ = s.(father.p′).
- If ¬finished collecting and propagating.p.s, then, from Theorem 9.1.9159,

we can deduce that the guard of done.p′.q′.s.t is disabled, and hence
that s = t.

- If finished collecting and propagating.p.s, then using Definition 8.7.4136

we have that p has sent to all non fathers in state s. Moreover, since
we know that (s.(nr sent.p′.(s.(father.p′))) = 1) we have that (Theorem
9.1.12161) sent to all neighs.p.s and thus done.p.s. Consequently, the
guard of done.p′.q′.s.t is disabled and hence s = t.

exists-part: idle.q.p.s.t

In order to verify that process q indeed receives a message from its neighbour p, and
becomes non-idle we have to prove that the guard of idle.q.p.s.t is enabled in state
s. Using Theorem 9.1.6159, and the assumption that s.(idle.p) this comes down to
verifying that:

mit.p.q.s

The implicit assumptions and the already proposed invariant-candidates cJ 1
PLUM and

cJ 2
PLUM do not give enough information to prove this. Consequently, we shall again

have to construct some additional invariant-candidates. Intuitively, when a message
is in transit from p to q this will always mean that (nr rec.q.p < nr sent.p.q). More-
over, when a process p is idle this means that is has not yet received any message
and hence all its nr rec variables are 0. Proposing these as candidates for part of the
invariant, enables us to prove the current exists-part. Since we have here that q is
idle and s.(nr sent.p.q = 1), we can deduce that (s.(nr rec.q.p) < s.(nr sent.p.q)) and
hence mit.p.q.s.

QPPPPPPR cJ 3
PLUM = ∀p ∈ P, q ∈ neighs.p : idle.p ⇒ nr rec.p.q = 0

QPPPPPPR cJ 4
PLUM = ∀p ∈ P, q ∈ neighs.p : (nr rec.q.p < nr sent.p.q) = mit.p.q

This establishes the proof of ana 1.2.2, ana 1.2, and hence ana 1. For future
reference the results are summarised in Figure 9.5168.

The verification of ana 2

Proving that a non-idle process shall eventually send messages to all its non-father-
neighbours can be proved by re-using ana 1.2.1 (Theorem 9.1.16168). The following
derivation aims at bringing ana 2 into the correct form for application of ana 1.2.1.
(The notes �, with which some of the derivation steps are marked, can be ignored
here. Their purpose will become clear later on.)
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Theorem 9.1.16 ana 1.2.1 not idle CON sent 2 neighs ex f

∀p ∈ P, q ∈ neighs.p : Jplum plum` ¬idle.p ∧ (q 6= father.p)   nr sent.p.q = 1

Theorem 9.1.17 ana 1.2.2 sent to q CON not idle q

∀p ∈ P, q ∈ neighs.p : Jplum plum` nr sent.p.q = 1   ¬idle.q

Theorem 9.1.18 ana 1.1 not idle CON idle father

∀p ∈ P, q ∈ neighs.p : Jplum plum` ¬idle.p ∧ (q = father.p)   ¬idle.q

Theorem 9.1.19 ana 1.2 not idle CON not idle neighs

∀p ∈ P, q ∈ neighs.p : Jplum plum` ¬idle.p ∧ (q 6= father.p)   ¬idle.q

Theorem 9.1.20 ana 1 Init CON all not idle

Jplum plum` ini(PLUM.iA.h.prop mes.done mes)   ∀p ∈ P : ¬idle.p

Figure 9.5: Verification of ana 1
J

` ∀p ∈ P : ¬idle.p
 
∀p ∈ P : sent to all non fathers.p







ana 2

⇐(  Substitution (4.6.350), 8.7.2136; prepare for   Conjunction (4.5.1949)) (�)
` ∀p ∈ P, q ∈ neighs.p : ¬idle.p

 
∀p ∈ P, q ∈ neighs.p : (¬idle.p ∧ (q = father.p)) ∨ (nr sent.p.q = 1)

⇐(  Conjunction (4.5.1949), twice) (�)
∀p ∈ P, q ∈ neighs.p :` ¬idle.p   (¬idle.p ∧ (q = father.p)) ∨ (nr sent.p.q = 1)

⇐(  Case distinction (4.6.750))
∀p ∈ P, q ∈ neighs.p :
` ¬idle.p ∧ (q = father.p)   (¬idle.p ∧ (q = father.p)) ∨ (nr sent.p.q = 1)

∧
` ¬idle.p ∧ (q 6= father.p)   (¬idle.p ∧ (q = father.p)) ∨ (nr sent.p.q = 1)

⇐(  Substitution (4.6.350) on the right hand side of both conjuncts)
∀p ∈ P, q ∈ neighs.p :
` ¬idle.p ∧ (q = father.p)   ¬idle.p ∧ (q = father.p)

∧
` ¬idle.p ∧ (q 6= father.p)   (nr sent.p.q = 1)

⇐(Second conjunct is proved by Theorem 9.1.16168)
∀p ∈ P, q ∈ neighs.p : ` ¬idle.p ∧ (q = father.p)   ¬idle.p ∧ (q = father.p)

⇐(  Reflexivity (4.6.550), �Conjunction 4.4.444, and assumed stability of JPLUM)
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` �¬idle.p ∧ (q = father.p)

This stability predicate is straightforward to prove since a non-idle process stays non-
idle (Theorem 9.1.14164) and does not write to its father variables.

Theorem 9.1.21 STABLEe not idle AND q IS f p

∀p, q ∈ P : plum`�¬idle.p ∧ (q = father.p)
J

For future reference we again summarise:

Theorem 9.1.22 ana 2 not idle CON not propagating

Jplum plum` ∀p ∈ P : ¬idle.p   ∀p ∈ P : sent to all non fathers.p

Theorem 9.1.23 not idle AND q IS f p CON REFL

∀p ∈ P, q ∈ neighs.p : Jplum plum` ¬idle.p ∧ (q = father.p)   ¬idle.p ∧ (q = father.p)
J

Verification of ana 3

Proving ana 3 comes down to verifying that when a message is sent, it shall eventu-
ally be received. In order to derive this proof obligation, we proceed as follows:

` (∀p ∈ P : ¬idle.p) ∧ (∀p ∈ P : sent to all non fathers.p)
 
(∀p ∈ P : ¬idle.p) ∧ (∀p ∈ P : rec from all non children.p)







ana 3

⇐(  Substitution (4.6.350), Definition 8.7.2136, and Definition 9.1.13162)
` ∀p ∈ P, q ∈ neighs.p : ¬idle.p ∧ ((q 6= father.p) ⇒ (nr sent.p.q = 1))

 
∀p ∈ P, q ∈ neighs.p : ¬idle.p ∧ ((q 6= father.p) ⇒ (nr rec.q.p = 1))

⇐(  Conjunction (4.5.1949), twice)
∀p ∈ P, q ∈ neighs.p :
` ¬idle.p ∧ ((q 6= father.p) ⇒ (nr sent.p.q = 1))

 
¬idle.p ∧ ((q 6= father.p) ⇒ (nr rec.q.p = 1))

= (logic)
∀p ∈ P, q ∈ neighs.p :
` (¬idle.p ∧ (q = father.p)) ∨ (¬idle.p ∧ (nr sent.p.q = 1))

 
(¬idle.p ∧ (q = father.p)) ∨ (¬idle.p ∧ (nr rec.q.p = 1))

⇐(  Disjunction (4.5.1849))
∀p ∈ P, q ∈ neighs.p :
` ¬idle.p ∧ (q = father.p)   ¬idle.p ∧ (q = father.p)
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∧
` ¬idle.p ∧ (nr sent.p.q = 1)   ¬idle.p ∧ (nr rec.q.p = 1)

⇐(First conjunct is proved by Theorem 9.1.23169)
∀p ∈ P, q ∈ neighs.p :
` ¬idle.p ∧ (nr sent.p.q = 1)   ¬idle.p ∧ (nr rec.q.p = 1)

⇐(  Conjunction (4.5.1949))
∀p ∈ P, q ∈ neighs.p :
(` ¬idle.p   ¬idle.p) ∧ (` nr sent.p.q = 1   nr rec.q.p = 1)

⇐(First conjunct is proved using   Reflexivity (4.6.550), and Theorem 9.1.14164)
∀p ∈ P, q ∈ neighs.p : ` nr sent.p.q = 1   nr rec.q.p = 1

So we have to prove that when a process p sends a message to a neighbour q, then q
shall eventually receive this message. Since nothing is known about q, there are two
possibilities:

q is non-idle In this case the execution of col.q.p shall ensure that p’s message is
eventually received.

q is idle This case is more subtle, since it is not ensured that execution of idle.q.p
shall receive p’s message. In illustration, suppose another neighbour r (r 6= p)
has also sent a message to the idle process q. If q decides to receive r’s message
before it receives the one from p, then q registers r as its father and becomes
non-idle. Consequently, subsequent executions of q’s idle-actions will behave
like skip and therefore shall not be responsible for the receipt of p’s message. In
this case q’s col actions will ensure that p’s message is eventually received.

This is reflected in the following proof:

∀p ∈ P, q ∈ neighs.p : ` nr sent.p.q = 1   nr rec.q.p = 1
⇐(  Case Distinction (4.6.750))

∀p ∈ P, q ∈ neighs.p
` nr sent.p.q = 1 ∧ ¬idle.q   nr rec.q.p = 1
︸ ︷︷ ︸

ana 3.1
∧
` nr sent.p.q = 1 ∧ idle.q   nr rec.q.p = 1
︸ ︷︷ ︸

ana 3.2
As indicated, when q is non-idle (ana 3.1) the execution of col.q.p shall ensure that
p’s message is eventually received. Consequently,   Introduction (4.6.450) is applied
to ana 3.1 giving us: for arbitrary p ∈ P and q ∈ neighs.p

` �JPLUM ∧ nr rec.q.p = 1
∧
` (JPLUM ∧ nr sent.p.q = 1 ∧ ¬idle.q) ensures (nr rec.q.p = 1)

Stability of (nr rec.q.p = 1) cannot be proved separately from the stability of JPLUM.
The reason for this is that – unlike the guards of prop.p.q and done.p.q that imply
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that (nr sent.p.q = 0) and hence allow for the separate verification of �(nr sent.p.q =
1) – the guards of idle.p.q and col.p.q actions do not imply that (nr rec.p.q = 0).
However, in combination with the proposed invariant-candidates they do. cJ 3

PLUM
implies that when q is idle, nr rec.q.p = 0. Therefore, when the guard of idle.q.p
(Definition 9.1.6159) is enabled the validity JPLUM implies nr rec.q.p = 0. cJ 4

PLUM,
together with cJ 2

PLUM, implies that when mit.q.p holds, nr rec.q.p = 0. Therefore,
when the guard of col.q.p (Definition 9.1.7159) is enabled the validity JPLUM implies
nr rec.q.p = 0. Consequently, we have the following theorem:

Theorem 9.1.24 STABLEe Invariant AND nr rec is 1

∀p, q ∈ P : plum`�(JPLUM ∧ nr rec.p.q = 1)
J

The validation of the ensures -property is below:

` (JPLUM ∧ nr sent.p.q = 1 ∧ ¬idle.q) ensures (nr rec.q.p = 1)

unless-part
idle.p′.q′.s.t

- if (p′ = q), then (s = t) since the guard of idle.p′.q′.s.t is disabled by ¬s.(idle.q).
- if (p′ 6= q) the variables idle.q and nr sent.p.q are not written

col.p′.q′.s.t does not write to idle and nr sent variables (Theorem 9.1.3158).
prop.p′.q′.s.t

- If (p 6= p′) or (q 6= q′) the variable nr sent.p.q is not written. (idle variables are
not written at all by prop)

- If (p = p′) and (q = q′), then (s = t) since the guard of prop.p′.q′.s.t is disabled
by (s.(nr sent.p′.q′) = 1).

done.p′.q′.s.t
- If (p 6= p′) or (q 6= q′) the variable nr sent.p.q is not written. (idle variables are

not written at all by done)
- Suppose (p = p′) and (q = q′).

- If q′ 6= s.(father.p′) then, from Theorem 9.1.9159, we can deduce that the
guard of done.p′.q′.s.t is disabled and hence s = t.

- Suppose q′ = s.(father.p′).
- If ¬finished collecting and propagating.p.s, then, from Theorem 9.1.9159,

we can deduce that the guard of done.p′.q′.s.t is disabled and hence
s = t.

- If finished collecting and propagating.p.s, then using Definition 8.7.4136

we have sent to all non fathers.p.s. Moreover, since p′ has already sent
to its father (i.e. (s.(nr sent.p′.(s.(father.p′))) = 1)) we have that (The-
orem 9.1.12161) sent to all neighs.p.s and thus done.p.s. Consequently,
the guard of done.p′.q′.s.t is disabled and hence s = t.

exists-part: col.q.p.s.t
In order to verify that process q indeed receives a message from its neighbour p,
and establishes t.(nr rec.q.p) = 1 we have to prove that the guard of col.q.p.s.t is
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enabled in state s, and s.(nr rec.q.p) = 0. Since s.(nr rec.q.p) 6= 1, Theorem 9.1.11161

gives us ¬rec from all neighs.q. Using Theorem 9.1.7159, and the assumption that
¬s.(idle.p) the proof obligations that remain are:

mit.p.q.s ∧ s.(nr rec.q.p) = 0
= (cJ 4

PLUM, and the assumption that s.(nr sent.p.q) = 1)
s.(nr rec.q.p) < 1 ∧ s.(nr rec.q.p) = 0
= (arithmetic)
s.(nr rec.q.p) = 0

Again, looking at the assumptions and the already proposed invariant-candidates,
we do not have enough information to prove this. Consequently, we introduce the
following candidate, which obviously suffices in this case.

QPPPPPPR cJ 5
PLUM = ∀p ∈ P, q ∈ neighs.p : (nr rec.p.q = 0) ∨ (nr rec.p.q = 1)

We hereby end the proof of ana 3.1.

Theorem 9.1.25 ana 3.1 not idle AND neigh has sent CON rec

∀p ∈ P, q ∈ neighs.p : Jplum plum` nr sent.p.q = 1 ∧ ¬idle.q   nr rec.q.p = 1
J

We continue with ana 3.2 using the strategy delineated earlier on page 170.

∀p ∈ P, q ∈ neighs.p : ` nr sent.p.q = 1 ∧ idle.q   nr rec.q.p = 1
⇐(  Transitivity (4.6.650))

∀p ∈ P, q ∈ neighs.p :
` nr sent.p.q = 1 ∧ idle.q   nr sent.p.q = 1 ∧ ¬idle.q ∧ (∃r : nr rec.q.r = 1)

∧
` nr sent.p.q = 1 ∧ ¬idle.q ∧ (∃r : nr rec.q.r = 1)   nr rec.q.p = 1

Using   Substitution (4.6.350), the second conjunct can be reduced to, and hence
proved by, Theorem 9.1.25172. The first conjunct is proved by   Introduction
(4.6.450):

` �(JPLUM ∧ nr sent.p.q = 1 ∧ ¬idle.q ∧ (∃r : nr rec.q.r = 1))
∧
` (JPLUM ∧ nr sent.p.q = 1 ∧ idle.q)

ensures
(nr sent.p.q = 1 ∧ ¬idle.q ∧ (∃r : nr rec.q.r = 1))

The stability requirement can be proved using � Conjunction 4.4.444, Theorems
9.1.14164, 9.1.15165, and 9.1.24171. The proof of the ensures -property is similar to
that of ana 3.1 on the understanding that idle.q.p.s.t in instantiated in the exists-
part instead of col.q.p.s.t.
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Figure 9.6: Rooted spanning tree; process p has depth 3.
J

Theorem 9.1.26 ana 3.2 idle AND neigh has sent CON rec

∀p ∈ P, q ∈ neighs.p : Jplum plum` nr sent.p.q = 1 ∧ idle.q   nr rec.q.p = 1

Theorem 9.1.27 ana 3 not propagating and not idle CON not idle rec from all non child

Jplum plum` (∀p ∈ P : ¬idle.p) ∧ (∀p ∈ P : sent to all non fathers.p)
 
(∀p ∈ P : ¬idle.p) ∧ (∀p ∈ P : rec from all non children.p)

J

9.1.7 Theory on rooted spanning trees

A rooted spanning tree of a connected communication network (P, neighs) (see Figure
9.6) is a directed graph and consists of:

• a unique designated process r of the network which is considered to be the root
of the tree, and hence has no outgoing edges to other processes in the network.

• a subset of communication links of the network, such that for all processes p ∈ P
it holds that there is a unique path from p to r in the tree.

The tree is characterised by a process r and a function f ∈ P→P (see Figure 9.6).
To formalise the fact that the root is a process in the network, and has no outgoing
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edges to any other process, we define

(r ∈ P) ∧ (f.r = r)

Consequently, since the communication links in the tree have to be a subset of those
in the network, f has to satisfy:

∀p ∈ P : (p 6= r) ⇒ (f.p ∈ neighs.p)

For ease of reference, when q = f.p, we call q the ancestor or father of p, and similarly
p the descendant or child of q. To specify that for every process p ∈ P there is a
unique path from p to r in the tree, we define the depth of a process p, as follows:

Definition 9.1.28 depth

depth.f.r.p.k = (r = iterate.k.f.p) ∧ ∀m < k : (r 6= iterate.m.f.q)
J

In words, process p has depth k, if the shortest path from p to r in the tree has length
k. Since f is a function, the existence of a unique path from p to r equals the existence
of a shortest path from p to r in the tree. Consequently, the requirement that for
every process p ∈ P there has to be a unique path from p to r in the tree can be
characterised by:

∀p ∈ P : ∃k : depth.f.r.p.k

Summarising, we have the following definition of a rooted spanning tree of a connected
network (P, neighs).

Definition 9.1.29 Rooted Spanning Tree RST

RST.f.r.P.neighs = (r ∈ P) ∧ (r = f.r)
∀p ∈ P : (p 6= r) ⇒ (f.p ∈ neighs.p)
∀p ∈ P : ∃k : depth.f.r.p.k

J

Since every process in a rooted spanning tree has a unique depth, we can categorise
processes into levels by using their depths. This is depicted in Figure 9.7. The set of
processes at level k is defined as follows:

Theorem 9.1.30 level

level.P.f.r.k = {p | p ∈ P ∧ depth.f.r.p.k}
J

When it is clear from the context which P, f, and r are used, we shall abbreviate
level.P.f.r.k by level.k.

The height of a rooted spanning tree is defined to be the maximum of the depths
of all processes in the underlying network:
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Figure 9.7: Processes categorised into levels.
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Definition 9.1.31 Height of Tree height

height.P.f.r.neighs.h = (h = max.{k | p ∈ P ∧ depth.f.r.p.k})
J

Again, when it is clear from the context which P, f, r, and neighs are used, we shall
abbreviate height.P.f.r.neighs.h by height.h. The reader can check that the height of
the rooted spanning tree in Figure 9.6 is 4. Moreover, it is not hard to see that:

Theorem 9.1.32 RST has height

Connected Network.P.neighs.starter ∧ RST.f.r.P.neighs
∃h : height.P.f.r.neighs.h

J

9.1.8 Verification of the catamorphism part

` (∀p ∈ P : ¬idle.p)
∧ (∀p ∈ P : sent to all non fathers.p)
∧ (∀p ∈ P : rec from all non children.p)
 
∀p : p ∈ P : done.p























catamorphism− part

First of all we need to construct the function f ∈ P→P, that characterises the rooted
spanning tree. Obviously, the father variables were set as to define such a function.



176 Formally proving the correctness of distributed hylomorphisms

Consequently, we start by bringing this function f into the left hand side of   as
follows. In order to avoid confusion between the type of father and f we explicitly
denote the state s in the last conjunct of the left hand side of  . As a consequence
‘=’ is overloaded to denote eq (see Table 3.123), and not =∗ (see pages 25 through 27)).

⇐(  Substitution (4.6.350))
` ∃f ∈ P→P :

(∀p ∈ P : ¬idle.p)
∧ (∀p ∈ P : sent to all non fathers.p)
∧ (∀p ∈ P : rec from all non children.p)
∧ (∀p ∈ P : (λs. f.p = (s ◦ father).p))

 
∀p : p ∈ P : done.p

⇐(  Disjunction (4.5.1849))
∀f ∈ P→P :
` (∀p ∈ P : ¬idle.p)

∧ (∀p ∈ P : sent to all non fathers.p)
∧ (∀p ∈ P : rec from all non children.p)
∧ (∀p ∈ P : (λs. f.p = (s ◦ father).p))
 
∀p : p ∈ P : done.p

Second, we have to prove that we have indeed built a rooted spanning tree. That
is, we need to bring the conjunct RST.P.f.starter.neighs into the left hand side of  .
Using   Substitution (4.6.350) this means we have to prove that:

∀s ∈ State : Jplum.s
∧ ∀p ∈ P : ¬ s.(idle.p)
∧ ∀p ∈ P : sent to all non fathers.p.s
∧ ∀p ∈ P : rec from all non children.p.s
∧ ∀p ∈ P : f.p = (s ◦ father).p
⇒
(starter = f.starter) P1

∀p ∈ P : (p 6= starter) ⇒ (f.p ∈ neighs.p) P2

∀p ∈ P : ∃k : depth.f.starter.p.k P3

(9.1.33)

Evidently, in order to be able to prove this, we shall need to invent some new can-
didates for part of the invariant. The first invariant-candidate follows naturally from
the proof obligation P1. Since initially the starter is defined to be non-idle and
father.starter equals1 starter, the following is a valid (Theorem 9.1.21169) invariant-
candidate2:

1Note that in order to be able to prove that this is an invariant we need the initial condition
stating that: father.starter = starter (see page 134).

2Again we explicitly denote the state to avoid confusion. Consequently, and contrary to the other
invariant-candidates, =, ∧, ¬, and ⇒ are not overloaded to denote State-lifted operators, but rather
Val-lifted operators, see Table 3.123.
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QPPPPPPR cJ 6
PLUM = (λs. (s ◦ father).starter = starter ∧ ¬s.(idle.starter))

The next invariant-candidates are introduced as to establish proof obligation P2 and
P3 respectively. Since processes only receive messages from their neighbours, and
once non-idle never change the value of their father variable again, we propose:

QPPPPPPRcJ 7
PLUM = (λs. ∀p ∈ P : (p 6= starter) ∧ ¬s.(idle.p)

⇒ ((s ◦ father).p ∈ neighs.p))

QPPPPPPR cJ 8
PLUM = (λs. ∀p ∈ P : ¬s.(idle.p) ⇒ ∃k : depth.(s ◦ father).starter.p.k)

It is not hard to see that these candidates are sufficient to prove 9.1.33177.

Theorem 9.1.33 all not idle IMP RST

For all f ∈ P→P, s ∈ State:

Jplum.s ∧ (∀p ∈ P : ¬ s.(idle.p)) ∧ (∀p ∈ P : sent to all non fathers.p.s)
(∀p ∈ P : rec from all non children.p.s) ∧ (∀p ∈ P : f.p = (s ◦ father).p)

RST.P.f.starter.neighs
J

For arbitrary f ∈ P→P, we now proceed with the catamorphism part as follows:

` (∀p ∈ P : ¬idle.p)
∧ (∀p ∈ P : sent to all non fathers.p)
∧ (∀p ∈ P : rec from all non children.p)
∧ (∀p ∈ P : (λs. f.p = (s ◦ father).p))
 
∀p : p ∈ P : done.p

⇐(  Substitution (4.6.350), using Theorem 9.1.33177)3

` (∀p ∈ P : ¬idle.p)
∧ (∀p ∈ P : sent to all non fathers.p)
∧ (∀p ∈ P : rec from all non children.p)
∧ (∀p ∈ P : (λs. f.p = (s ◦ father).p))
∧ (λs. RST.P.f.starter.neighs)
 
∀p : p ∈ P : done.p

⇐(  Stable Shift (4.6.1050))

3Note that RST is not a state-predicate. We have State-lifted it by enclosing it in between
(λs. . . .).
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(∀p ∈ P : ¬idle.p)
∧ (∀p ∈ P : sent to all non fathers.p)
∧ (∀p ∈ P : rec from all non children.p)
∧ (∀p ∈ P : (λs. f.p = (s ◦ father).p))
∧ (λs. RST.P.f.starter.neighs) ` true

 
∀p : p ∈ P : done.p

Before continuing with this proof obligation, it shall be clear that we need to do
something about its readability. For this we introduce the following definition, which
contains all conjuncts located at the left hand side of ` (including Jplum, which is
there implicitly (Section 9.1.3)). We call it Jana since it refers to properties that were
established during the anamorphism part.

Definition 9.1.34 Invar and ANA

Jana = Jplum

∧ (∀p ∈ P : ¬idle.p)
∧ (∀p ∈ P : sent to all non fathers.p)
∧ (∀p ∈ P : rec from all non children.p)
∧ (∀p ∈ P : (λs. f.p = (s ◦ father).p))
∧ (λs. RST.P.f.starter.neighs)

J

Using � Conjunction (4.4.444), 9.1.15165, 9.1.24171, 9.1.21169, and the assumed va-
lidity of Jplum, we can derive:

Theorem 9.1.35 STABLe Invar and ANA

plum`�Jana
J

This reduces our current proof obligation to:

Jana ` true   ∀p ∈ P : done.p

Now we can proceed with the proof strategy presented in Section 9.1.5; that is prove
that the required information flows from the leaves to the root of the rooted spanning
tree. In the case of proving termination this comes down to proving that when the
leaves of the RST are done, then eventually all the processes will be done. From
Theorem 9.1.32175 we can deduce the height h of the RST, and consequently we know
that the leaves of the RST equal the processes at level h. Therefore we decompose
our proof obligation as follows:

Jana ` true   ∀p ∈ P : done.p
⇐(  Substitution (4.6.350), Definition 9.1.34178, and Theorem 9.1.32175)

Jana ` (∃h.height.P.f.starter.neighs.h)   ∀p ∈ P : done.p
⇐(  Disjunction (4.5.1849))
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∀h : Jana ` height.P.f.starter.neighs.h   ∀p ∈ P : done.p
⇐(  Transitivity (4.6.650))

∀h : Jana ` height.P.f.starter.neighs.h   ∀p ∈ (level.P.f.starter.h) : done.p
︸ ︷︷ ︸

cata 1
∧
∀h : Jana ` ∀p ∈ (level.P.f.starter.h) : done.p   ∀p ∈ P : done.p
︸ ︷︷ ︸

cata 2

Verification of cata 1

Since leaves have no descendants (i.e. children), and Jana states that:
• all processes have received messages from all their non-child-neighbours
• all processes have sent messages to all their non-father-neighbours

we can prove that the leaves (i.e. the processes at level h in a RST of height h) have
finished their collecting and propagating phases:

Theorem 9.1.36 height Invar IMP leaves finished

Jana ∧ height.P.f.starter.neighs.h
∀p ∈ (level.P.f.starter.h) : finished collecting and propagating.p

J

Consequently, we can proceed with cata 1 as follows:

∀h : Jana ` height.P.f.starter.neighs.h   ∀p ∈ (level.P.f.starter.h) : done.p
⇐(  Substitution (4.6.350), using Theorem 9.1.36179)

∀h : Jana ` ∀p ∈ (level.P.f.starter.h) : finished collecting and propagating.p
 
∀p ∈ (level.P.f.starter.h) : done.p

⇐(  Conjunction (4.5.1949))
∀h, p ∈ (level.P.f.starter.h) :
Jana ` finished collecting and propagating.p   done.p

Since the rec from all neighs part of done (see Definition 8.7.7136) was already estab-
lished by the validity of finished collecting and propagating (see Definition 8.7.4136),
we continue as follows:

⇐(Definition 8.7.7136 and Definition 8.7.4136)
∀h, p ∈ (level.P.f.starter.h) :
Jana ` rec from all neighs.p ∧ finished collecting and propagating.p

 
rec from all neighs.p ∧ sent to all neighs.p

⇐(  Conjunction (4.5.1949))
∀h, p ∈ (level.P.f.starter.h) :
Jana ` rec from all neighs.p   rec from all neighs.p

∧
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Jana ` finished collecting and propagating.p   sent to all neighs.p

The first conjunct can easily be proved by   Reflexivity (4.6.550), �Conjunctivity
(4.4.444), and Theorem 9.1.24171.

For the second conjunct, we argue as follows. When a follower process has finished
its collecting and propagating phase, it is ready to sent its final message to its father
after which it becomes done and hence has sent to all neighs. However, when the
starter has finished collecting and propagating, and hence sent to all non fathers, it
has already sent to all neighs, since cJ 6

PLUM states that the father of the starter is the
starter itself; and the definition of Network (Definition 8.2.1121) defines that a process
cannot be a neighbour of itself.

Theorem 9.1.37 sent 2 all except f starter IMP sent 2 all neighs starter

Jplum ∧ sent to all non fathers.starter
sent to all neighs.starter

J

Consequently, we make the following case distinction: (note that this is a case dis-
tinction on the outermost level, not inside ` using   Case Distinction (4.6.750))

∀h, p ∈ (level.P.f.starter.h) :
Jana ` finished collecting and propagating.p   sent to all neighs.p

⇐((p = starter) ∨ (p 6= starter))
Jana ` finished collecting and propagating.starter   sent to all neighs.starter

∧
∀h, p ∈ (level.P.f.starter.h), p 6= starter :
Jana ` finished collecting and propagating.p   sent to all neighs.p

Evidently, the first conjunct can be proved by   Introduction (4.6.450), using The-
orem 9.1.37180, Theorem 9.1.15165, and Definition 8.7.4136. We carry on with the sec-
ond conjunct by noticing that when a process has finished collecting and propagating,
it has already sent a message to its father or not.

∀h, p ∈ (level.P.f.starter.h), p 6= starter :
Jana ` finished collecting and propagating.p   sent to all neighs.p

⇐(  Case Distinction (4.6.750))
∀h, p ∈ (level.P.f.starter.h), p 6= starter :
Jana ` finished collecting and propagating.p ∧ reported to father.p

 
sent to all neighs.p

∧
Jana ` finished collecting and propagating.p ∧ ¬reported to father.p

 
sent to all neighs.p
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The first conjunct can again be easily proved by   Introduction (4.6.450), using
Theorem 9.1.12161, and Theorem 9.1.15165.

Progress stated in the second conjunct is ensured by the done action of process
p. Consequently:

∀h, p ∈ (level.P.f.starter.h), p 6= starter :
Jana ` finished collecting and propagating.p ∧ ¬reported to father.p

 
sent to all neighs.p

⇐(  Substitution (4.6.350), to recognise guard of done)
∀h, p ∈ (level.P.f.starter.h), p 6= starter :
Jana ` ∃q ∈ neighs.p : finished collecting and propagating.p

∧¬reported to father.p ∧ (q = father.p)
 
∃q ∈ neighs.p : sent to all neighs.p

⇐(  Disjunction (4.5.1849))
∀h, p ∈ (level.P.f.starter.h), p 6= starter, q ∈ neighs.p :
Jana ` finished collecting and propagating.p ∧ ¬reported to father.p

∧ (q = father.p)
 
sent to all neighs.p

⇐(  Introduction (4.6.450), Theorem 9.1.15165)
∀h, p ∈ (level.P.f.starter.h), p 6= starter, q ∈ neighs.p :
` Jana ∧ finished collecting and propagating.p ∧ ¬reported to father.p

∧ (q = father.p)
ensures
sent to all neighs.p

As the reader can verify, this ensures -property can be easily proved. This ends the
verification of:

Theorem 9.1.38 finished collecting and propagating CON done

∀h : Jana ` ∀p ∈ (level.P.f.starter.h) : finished collecting and propagating.p
 
∀p ∈ (level.P.f.starter.h) : done.p

J

and consequently, of cata 1:

Theorem 9.1.39 cata 1 height h CON all done at height h

∀h : Jana ` height.P.f.starter.neighs.h   ∀p ∈ (level.P.f.starter.h) : done.p
J
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Verification of cata 2

The proof of cata 2 proceeds by induction on h.

Induction Base: case 0

Jana ` ∀p ∈ (level.P.f.starter.0) : done.p   ∀p ∈ P : done.p

Induction Hypothesis:

∀h : Jana ` ∀p ∈ (level.P.f.starter.h) : done.p   ∀p ∈ P : done.p

Induction Step: case (h + 1)

Jana ` ∀p ∈ (level.P.f.starter.(h + 1)) : done.p   ∀p ∈ P : done.p

proof of Induction Base

Since the only process residing at level.P.f.starter.0 is the starter, and the starter can
only be done when all other processes are done, the Induction Base can be proved
by   Introduction (4.6.450) as follows:

Jana ` ∀p ∈ (level.P.f.starter.0) : done.p   ∀p ∈ P : done.p
⇐(  Substitution (4.6.350), Definition 9.1.30174)

Jana ` done.starter   ∀p ∈ P : done.p
⇐(  Introduction (4.6.450))

` �(Jana ∧ ∀p ∈ P : done.p)
∧
∀s ∈ State.Jana.s ∧ done.starter.s ⇒ ∀p ∈ P : done.p.s

The stability predicate can be proved by � Conjunction (4.4.444), using Theorem
9.1.15165, Theorem 9.1.24171, and 9.1.35178. To prove the second conjunct, assume
for arbitrary states s:
A1 : Jana.s
A2 : done.starter.s
A3 : p ∈ P
We prove done.p.s by contradiction, by assuming that:
A4 : ¬done.p.s

and proving that ¬done.starter.s, which establishes false with A2.

The proof strategy will be the following. Since process p is not done, we know that is
has not yet sent a message to its father. Consequently, p’s father has not yet received
a message from p, and hence cannot be done. Iterating this argument until the father
of the process under consideration is the starter, will establish the proof.

However, in order to apply this strategy, we shall have to introduce two new
invariant-candidates since, as the reader can verify, the ones introduced until now do
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not suffice. We propose:

QPPPPPPR cJ 9
PLUM = ∀p, q ∈ P : ¬(idle.p) ∧ ¬done.p ∧ (q = father.p) ⇒ nr sent.p.q = 0

So we can deduce that when a process p is not done, it has not yet sent a message
to its father. Furthermore, we propose the invariant-candidate that states that the
number of messages a process q has received from p is always less than or equal to
the number of messages p has sent to q:

QPPPPPPR cJ 10
PLUM = ∀p, q ∈ P : nr rec.q.p ≤ nr sent.p.q

So we can deduce that when p has not yet sent a message to some neighbour q, q has
not yet received a message from p. When a process q still has neighbours p from which
it has not received a message (i.e. it holds that nr rec.q.p = 0), we can prove (using
cJ 5

PLUM) that q has not rec from all neighs and hence is not done. Consequently,
equipped with the new invariant-candidates proposed above, we can now prove that
when p is not done, neither is its father:

Theorem 9.1.40 not done IMP f not done

For all states s ∈ State:

Jplum.s ∧ p ∈ P ∧ ¬s.(idle.p) ∧ ¬done.p.s ∧ (q = (s ◦ father).p)
¬done.q.s

J

Subsequently, by induction we can prove that:

Theorem 9.1.41 not done IMP iterate f not done

For all states s ∈ State:

Jplum.s ∧ p ∈ P ∧ ¬s.(idle.p) ∧ ¬done.p.s
∀m, q : (q = iterate.m.(s ◦ father).p) ⇒ ¬done.q.s

J

Consequently, using invariant-part cJ 8
PLUM we can prove that:

Theorem 9.1.42 not done IMP starter not done

For all states s ∈ State:

Jplum.s ∧ p ∈ P ∧ ¬s.(idle.p) ∧ ¬done.p.s
¬done.starter.s

J

Assumptions A1, A3, A4, Theorem 9.1.42183, and the characterisation of Jana (Defi-
nition 9.1.34178) now establish that ¬done.starter.s.

end of proof Induction Base
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proof of Induction Step

Jana ` ∀p ∈ (level.P.f.starter.(h + 1)) : done.p   ∀p ∈ P : done.p
⇐(  Transitivity (4.6.650), and Induction Hypothesis)

Jana ` ∀p ∈ (level.P.f.starter.(h + 1)) : done.p   ∀p ∈ (level.P.f.starter.h) : done.p

The intuitive idea behind the proof strategy for this last proof obligation is the follow-
ing: because processes at level (h + 1) are done, these have sent messages to their fa-
thers who all reside at level h; eventually all processes at level h shall receive these mes-
sages and (since already having sent to all non fathers and rec from all non children
(Jana)) will have finished collecting and propagating; consequently, all processes at
level h will eventually send a message to their father and become done.

Jana ` ∀p ∈ (level.P.f.starter.(h + 1)) : done.p   ∀p ∈ (level.P.f.starter.h) : done.p
⇐(  Transitivity (4.6.650))

Jana ` ∀p ∈ (level.P.f.starter.(h + 1)) : done.p
 
∀p ∈ (level.P.f.starter.h) : finished collecting and propagating.p

∧
Jana ` ∀p ∈ (level.P.f.starter.h) : finished collecting and propagating.p

 
∀p ∈ (level.P.f.starter.h) : done.p

⇐(The second conjunct is proved by Theorem 9.1.38181)
Jana ` ∀p ∈ (level.P.f.starter.(h + 1)) : done.p

 
∀p ∈ (level.P.f.starter.h) : finished collecting and propagating.p

⇐(  Substitution (4.6.350), and Definitions 8.7.4136, 8.7.7136, 9.1.34178, 9.1.30174)
Jana ` ∀p ∈ (level.P.f.starter.(h + 1)), q ∈ neighs.p : nr sent.p.q = 1 ∧ ¬idle.q

 
∀p ∈ (level.P.f.starter.(h + 1)), q ∈ neighs.p : nr rec.q.p = 1

⇐(  Conjunction (4.5.1949), twice)
∀p ∈ (level.P.f.starter.(h + 1)), q ∈ neighs.p :
Jana ` nr sent.p.q = 1 ∧ ¬idle.q   nr rec.q.p = 1

⇐(  Stable Strengthening (4.6.950), Definition 9.1.34178, and Theorem 9.1.35178)
∀p ∈ (level.P.f.starter.(h + 1)), q ∈ neighs.p :
Jplum ` nr sent.p.q = 1 ∧ ¬idle.q   nr rec.q.p = 1

Since p ∈ level.P.f.starter.(h + 1), implies p ∈ P, Theorem 9.1.25172 establishes the
Induction Step.

end of proof Induction Step
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cJ 1
PLUM = ∀p ∈ P, q ∈ neighs.p : ¬idle.p ∧ q = father.p ⇒ ¬idle.q

cJ 2
PLUM = ∀p ∈ P, q ∈ neighs.p : nr sent.p.q = 0 ∨ nr sent.p.q = 1

cJ 3
PLUM = ∀p ∈ P, q ∈ neighs.p : idle.p ⇒ nr rec.p.q = 0

cJ 4
PLUM = ∀p ∈ P, q ∈ neighs.p : (nr rec.q.p < nr sent.p.q) = mit.p.q

cJ 5
PLUM = ∀p ∈ P, q ∈ neighs.p : (nr rec.p.q = 0) ∨ (nr rec.p.q = 1)

cJ 6
PLUM = (λs. (s ◦ father).starter = starter ∧ ¬s.(idle.starter))

cJ 7
PLUM = (λs. ∀p ∈ P : (p 6= starter) ∧ ¬s.(idle.p) ⇒ ((s ◦ father).p ∈ neighs.p))

cJ 8
PLUM = (λs. ∀p ∈ P : ¬s.(idle.p) ⇒ ∃k : depth.(s ◦ father).starter.p.k)

cJ 9
PLUM = ∀p, q ∈ P : ¬(idle.p) ∧ ¬done.p ∧ (q = father.p) ⇒ nr sent.p.q = 0)

cJ 10
PLUM = ∀p, q ∈ P : nr rec.q.p ≤ nr sent.p.q

Figure 9.8: Invariant-candidates proposed during refinement and decomposition
J

9.1.9 Construction of the invariant

As indicated in Section 9.1.1 the invariant Jplum is constructed such that it implies
all the candidates that were proposed during the process of refinement and decompo-
sition. All the proposed candidates are collected in Figure 9.8. Finding the minimal
invariant is now like a nice puzzle. In order to solve this puzzle, we shall start by
analysing the different candidates. The first thing we notice is that:

cJ 2
PLUM ∧ cJ 10

PLUM ⇒ cJ 5
PLUM

Consequently, aiming for minimality, cJ 5
PLUM can be dropped. Subsequently, we shall

start verifying the stability of the conjunction of the remaining candidates. That is,
we verify that:

` � cJ 1
PLUM ∧ cJ 2

PLUM ∧ cJ 3
PLUM ∧ cJ 4

PLUM ∧ cJ 6
PLUM

∧ cJ 7
PLUM ∧ cJ 8

PLUM ∧ cJ 9
PLUM ∧ cJ 10

PLUM

During these verification activities, two more invariant-candidates had to be proposed.
One, – cJ 11

PLUM below – had to be introduced to prove the stability of cJ 4
PLUM; and

another – cJ 12
PLUM below – was needed in order to prove the stability of cJ 8

PLUM and
cJ 9

PLUM. Since the verification activities are straightforward we shall not describe
them here, and just state the two invariant-candidates:
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Definition 9.1.43 PLUM’s invariant Invariant DEF

Jplum =

∀p ∈ P, q ∈ neighs.p : ¬idle.p ∧ q = father.p ⇒ ¬idle.q cJ 1
PLUM

∧ ∀p ∈ P, q ∈ neighs.p : nr sent.p.q = 0 ∨ nr sent.p.q = 1 cJ 2
PLUM

∧ ∀p ∈ P, q ∈ neighs.p : idle.p ⇒ nr rec.p.q = 0 cJ 3
PLUM

∧ ∀p ∈ P, q ∈ neighs.p : (nr rec.q.p < nr sent.p.q) = mit.p.q cJ 4
PLUM

∧ father.starter = starter ∧ ¬(idle.starter) cJ 6
PLUM

∧ ∀p ∈ P : (p 6= starter) ∧ ¬(idle.p) ⇒ (father.p ∈ neighs.p) cJ 7
PLUM

∧ (λs. ∀p ∈ P : ¬s.(idle.p) ⇒ ∃k : depth.(s ◦ father).starter.p.k) cJ 8
PLUM

∧ ∀p, q ∈ P : ¬(idle.p) ∧ ¬done.p ∧ (q = father.p) ⇒ nr sent.p.q = 0 cJ 9
PLUM

∧ ∀p, q ∈ P : nr rec.q.p ≤ nr sent.p.q cJ 10
PLUM

∧ ∀p, q ∈ P : M.p.q = [] ∨ (∃x : M.p.q = [x]) cJ 11
PLUM

∧ ∀p, q ∈ P : idle.p ⇒ nr sent.p.q = 0 cJ 12
PLUM

Theorem 9.1.44 STABLEe Invariant

plum`�Jplum

Theorem 9.1.45 INVe Invariant

plum` �Jplum

Figure 9.9: PLUM’s invariant
J

QPPPPPPR cJ 11
PLUM = ∀p, q ∈ P : M.p.q = [] ∨ (∃x : M.p.q = [x])

Stating that, on every communication channel there is no message in transit , or pre-
cisely one.

QPPPPPPR cJ 12
PLUM = ∀p, q ∈ P : idle.p ⇒ nr sent.p.q = 0

Stating that idle processes have not yet sent messages to their neighbours.

Finally, we construct our invariant consisting of the conjunction of: cJ 1
PLUM through

cJ 12
PLUM with the exception of cJ 5

PLUM. The resulting definition, together with the
theorems stating stability and invariance in PLUM are in Figure 9.9186. In the
characterisation of Jplum (Definition 9.1.43186), all logical operators, except for those
in cJ 8

PLUM, are overloaded to denote their State-lifted versions.
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9.2 An intermediate review

Reckoning with the fact that the reader might have lost track as to what we are
aiming at, this section shall put the result of the previous section into perspective
with respect to Chapter 8. Thus far, we have proved termination, as described in
Section 8.10.1, for the specific case where Π equals the PLUM algorithm. Returning
to Figure 8.14151: Section 9.1.5 corresponds to the theory HYLO PLUM; Section 9.1.6
to the theory ANA PLUM; Section 9.1.7 to the theory RST; Section 9.1.8 to the theory
CATA PLUM; Section 9.1.9 to the theory PLUM INV.

As explained in Section 8.13, proving termination of PLUM first, results in the
most efficient approach to verify the correctness of all distributed hylomorphisms,
since termination of the other distributed hylomorphisms, can then be verified using
the refinement framework described in Chapter 7. The latter shall be described in
the following three sections.

9.3 Proving termination of ECHO

This section shall describe how termination of the ECHO algorithm is proved using
the refinements framework from Chapter 7, and the already proved fact that:

∀J :: PLUM vR plum echo, J ECHO

The UNITY specification reads:

Theorem 9.3.1 HYLO ECHO

∀iA, h, prop mes, done mes ::
Jplum ∧ Jecho echo.iA.h.prop mes.done mes ` ini(ECHO.iA.h.prop mes.done mes)

 
∀p : p ∈ P : done.p

J

where invariant Jecho captures additional safety properties for ECHO (if any). Again,
Jecho shall, if necessary, be constructed incrementally in a demand-driven way follow-
ing the conventions described in Section 9.1.1.

Using �Preservation Theorem 7.2.12112, it is straightforward to derive that Jplum

is also (Theorem 9.1.44186) a stable predicate in ECHO.

Theorem 9.3.2 STABLEe Invariant in ECHO

echo`�Jplum
J

The stability of: echo`� Jplum ∧ Jecho will be implicitly assumed throughout the
verification process, and verified when the precise characterisation of Jecho has been
established. For ease of reference, Figure 9.10 displays theorems about the guards of
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Theorem 9.3.3 guard of IDLE ECHO

guard of.(idleecho.p.q) = guard of.(idle.p.q)

Theorem 9.3.4 guard of COL ECHO

guard of.(colecho.p.q) = guard of.(col.p.q) ∧ sent to all non fathers.p

Theorem 9.3.5 guard of PROP ECHO

guard of.(propecho.p.q) = guard of.(prop.p.q)

Theorem 9.3.6 guard of DONE ECHO

guard of.(doneecho.p.q) = guard of.(done.p.q)

Figure 9.10: Guards of the actions from ECHO
J

ECHO’s actions. For readability we introduce the notational convention that:

` and echo` now abbreviate Jplum ∧ Jecho echo.iA.h.prop mes.done mes `

for arbitrary iA ∈ Expr, h ∈ P→Expr→Expr, prop mes ∈ P→Expr, and done mes
∈ P→Expr, for which hold that:

∀p, e : p ∈ P ∧ e C wPLUM : (h.p.e) C wPLUM
∀p : p ∈ P : PROP mes.p C wPLUM ∧ DONE mes.p C wPLUM

Note that PLUM’s write variables are the same as those of ECHO (see Definition
D.2.2255).

Again, we implicitly assume the validity of distinct ECHO Vars (see Definition D.2.4255),
ASYNC type decl.P.neighs, and Connected Network.P.neighs.starter.

9.3.1 Using refinements to derive termination of ECHO

As indicated in Chapter 8, termination of ECHO was proved using the property pre-
serving Theorem 7.2.10113.

echo` ini(ECHO.iA.h.prop mes.done mes)  ∀p : p ∈ P : done.p

⇐(Theorem 7.2.10113, 9.1.1157, 8.12.1149, and D.2.10256))
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∃W :: (wECHO = wPLUM ∪W ) ∧ (Jplum C W c) ∧ (wPLUM ⊆ W c)
∧

∀AP AE : AP ∈ aPLUM ∧ AP R plum echo AE :
echo` guard of.AP � guard of.AE

∧
∀AP AE : AP ∈ aPLUM ∧ AP R plum echo AQ :

echo` (Jplum ∧ Jecho ∧ guard of.AE) unless ¬(guard of.AP )

Since no variables are superimposed on PLUM in order to construct ECHO, the first
conjunct can be proved by instantiation with ∅. Subsequently, using:

• the characterisation of R plum echo (Figure 8.13148)
• the Theorems from Figure 9.10188, stating that the guards of the idleecho,

propecho, and doneecho actions are equal to those of PLUM
• anti-reflexivity of unless (Theorem 4.4.344)
• reflexivity of � (Theorem 4.5.847)
• the implicit assumption stating stability of (Jplum ∧ Jecho)

we can reduce the second and the third conjunct to:

∀p ∈ P, q ∈ neighs.p :
echo` guard of.col.p.q � guard of.colecho.p.q

}

reach− part
∧

echo` Jplum ∧ Jecho ∧ guard of.colecho.p.q
unless
¬guard of.col.p.q







unless− part

The unless-part is not hard to verify and will be left up to the enthusiastic reader.
In order to prove it, the current conjuncts from Jplum suffice, and hence no additional
safety properties have to be added to Jecho.

The proof of the reach-part proceeds by rewriting with Theorem 9.1.7159 and 9.3.4188:

∀p ∈ P, q ∈ neighs.p :
echo` ¬idle.p ∧mit.q.p ∧ ¬rec from all neighs.p

�
¬idle.p ∧mit.q.p ∧ ¬rec from all neighs.p ∧ sent to all non fathers.p

⇐(� Case distinction (4.5.1047))
∀p ∈ P, q ∈ neighs.p :

echo` ¬idle.p ∧mit.q.p ∧ ¬rec from all neighs.p ∧ sent to all non fathers.p
�
¬idle.p ∧mit.q.p ∧ ¬rec from all neighs.p ∧ sent to all non fathers.p

∧
echo` ¬idle.p ∧mit.q.p ∧ ¬rec from all neighs.p ∧ ¬sent to all non fathers.p

�
¬idle.p ∧mit.q.p ∧ ¬rec from all neighs.p ∧ sent to all non fathers.p

⇐(� Reflexivity (4.5.847) proves the first conjunct)
∀p ∈ P, q ∈ neighs.p :
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echo` ¬idle.p ∧mit.q.p ∧ ¬rec from all neighs.p ∧ ¬sent to all non fathers.p
�
¬idle.p ∧mit.q.p ∧ ¬rec from all neighs.p ∧ sent to all non fathers.p

⇐(� Substitution (4.5.647), to bring into correct form for � PSP (4.5.1247))
∀p ∈ P, q ∈ neighs.p :

echo` (¬idle.p ∧ ¬sent to all non fathers.p)
∧
(¬idle.p ∧mit.q.p ∧ ¬rec from all neighs.p)
�
(sent to all non fathers.p ∧ (¬idle.p ∧mit.q.p ∧ ¬rec from all neighs.p))
∨
(¬idle.p ∧mit.q.p ∧ ¬rec from all neighs.p ∧ sent to all non fathers.p)

⇐(� PSP (4.5.1247))
∀p ∈ P, q ∈ neighs.p :

echo` Jplum ∧ Jecho
∧ ¬idle.p ∧mit.q.p ∧ ¬rec from all neighs.p
unless
¬idle.p ∧mit.q.p ∧ ¬rec from all neighs.p
∧ sent to all non fathers.p























PSP− unless

∧
∀p ∈ P :

echo` ¬idle.p ∧ ¬sent to all non fathers.p
�
sent to all non fathers.p







PSP− reach

The proof of the PSP-unless-part is not complicated, again the characterisation of
Jplum suffices, and hence no additional safety properties have to be added to Jecho.
Note, that at this point Jecho can be substituted by true.

We shall proceed with the PSP-reach-part. If we look at it closely, we can see
that it resembles ana 2, a proof obligation we encountered during the verification
of termination of PLUM (see pages 163, 167). Obviously, if we can transform the
PSP-reach-part into a ana 2, we can re-use the proof-strategy used to prove ana 2
in the context of PLUM, to prove the PSP-reach-part in the context of ECHO.
Since ana 2’s proof-strategy uses conjunctivity of   (theorem 4.5.1949), and � does
not have this property, we first replace � by  :

⇐(  Convergence Implies Progress (4.6.250))
∀p ∈ P :

echo` ¬idle.p ∧ ¬sent to all non fathers.p
 
sent to all non fathers.p

Then, we apply a   Substitution (4.6.350) step similar to the �-marked-substitution
step made on page 168 to obtain:

∀p ∈ P :
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echo` ∀q ∈ neighs.p : ¬idle.p
�
∀q ∈ neighs.p : (¬idle.p ∧ (q = father.p)) ∨ (nr sent.p.q = 1)

Subsequently, we apply a conjunction step similar to the �-marked-conjunction step
made on page 168. Now, our proof obligation has become equal to that of ana 2 only
now in the context of ECHO:

∀p ∈ P, q ∈ neighs.p : echo` ¬idle.p   (¬idle.p ∧ (q = father.p)) ∨ (nr sent.p.q = 1)

Consequently, the same proof strategy applies. Inspecting ana 2’s proof strategy on
page 168 this comes down to proving:

Theorem 9.3.7 STABLEe not idle AND q IS f p in ECHO

∀p, q ∈ P : echo`�(¬idle.p ∧ (q = father.p))
J

which is straightforward, using the stability preserving Theorem 7.2.12112. Moreover,
we need an ECHO equivalent for Theorem 9.1.16168 (i.e. ana 1.2.1, page 165).
Again, the proof-strategy of ana 1.2.1 can be re-used. Returning to page 165, we
can see this comes down to proving the following two properties. First,

Theorem 9.3.8 STABLEe nr sent is 1 in ECHO

∀p, q ∈ P : echo`�(nr sent.p.q = 1)
J

which again is easy using stability preserving Theorem 7.2.12112. Second,

echo` (JPLUM ∧ JECHO ∧ ¬idle.p ∧ q 6= father.p) ensures (nr sent.p.q = 1)

This last proof obligation can be proved similarly to that of the ensures-part of
ana 1.2.1 (see page 165), and doing so, the unless-part of the ensures-part of ana 1.2.1
can be inherited by using unless-preserving Theorem 7.2.11112.

This ends the verification of the reach-part. Since no additional safety properties
have to be proved for ECHO, we can define JECHO to be true.

Definition 9.3.9 Invariant ECHO

JECHO = true
J

since true is trivially stable, this ends verification of termination of ECHO. Although
the definition for JECHO might appear superfluous, we decided to include it for two
reasons. The first one being preservation of consistency throughout this chapter. The
second reason is that by explicitly defining JECHO to be true, it immediately becomes
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clear that PLUM and ECHO have the same safety properties.

9.4 Proving termination of Tarry

This section shall describe how termination of the Tarry algorithm is proved using
the refinements framework from Chapter 7, and the already proven fact that:

∀J :: PLUM vR plum tarry, J Tarry

The UNITY specification reads:

Theorem 9.4.1 HYLO Tarry

∀iA, h, prop mes, done mes ::
Jplum ∧ JTarry Tarry.iA.h.prop mes.done mes ` ini(Tarry.iA.h.prop mes.done mes)

 
∀p : p ∈ P : done.p

J

where invariant JTarry captures additional safety properties for Tarry. Again, JTarry

shall be constructed incrementally in a demand-driven way following the conventions
described in Section 9.1.1.

Using �Preservation Theorem 7.2.12112, it is straightforward to derive that Jplum
is also (Theorem 9.1.44186) a stable predicate in Tarry.

Theorem 9.4.2 STABLEe Invariant in Tarry

Tarry`�Jplum
J

The stability of: Tarry`�(Jplum ∧ JTarry) will be implicitly assumed throughout the
verification process, and verified when the precise characterisation of JTarry has been
established. For ease of reference, Figure 9.11 displays theorems about the guards of
Tarry’s actions. For readability we introduce the notational convention that:

` and Tarry` now abbreviate Jplum ∧ JTarry Tarry.iA.h.prop mes.done mes `

for arbitrary iA ∈ Expr, h ∈ P→Expr→Expr, prop mes ∈ P→Expr, and done mes
∈ P→Expr, for which hold that:

∀p, e : p ∈ P ∧ e C wPLUM : (h.p.e) C wPLUM
∀p : p ∈ P : PROP mes.p C wPLUM ∧ DONE mes.p C wPLUM

Although in order to conclude that Tarry is a well-formed UNITY program (i.e.
satisfies the predicate Unity (see Theorem D.3.10258)) it would be sufficient to as-
sume confinement by the write variables of Tarry, we need to assume confinement
by PLUM’s write variables here in order to be able to deduce termination of PLUM
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Theorem 9.4.3 guard of IDLE Tarry

guard of.(idleTarry.p.q) = guard of.(idle.p.q)

Theorem 9.4.4 guard of COL Tarry

guard of.(colTarry.p.q) = guard of.(col.p.q) ∧ ¬le rec.p

Theorem 9.4.5 guard of PROP Tarry

guard of.(propTarry.p.q) = guard of.(prop.p.q) ∧ le rec.p

Theorem 9.4.6 guard of DONE Tarry

guard of.(doneTarry.p.q) = guard of.(done.p.q)

Figure 9.11: Guards of the actions from Tarry
J

(see implicit assumptions made in Section 9.1.4). Obviously, confinement by PLUM’s
write variables implies (using Theorem C Monotonicity (3.3.1928)) confinement by
Tarry’s write variables.

Again, we implicitly assume the validity of distinct Tarry Vars (see Definition D.3.4257),
ASYNC type decl.P.neighs, and Connected Network.P.neighs.starter.

9.4.1 Using refinements to derive termination of Tarry

As indicated in Chapter 8, termination of Tarry is proved using property preserving
Theorem 7.2.9113. The reason for using this theorem is that Theorem 7.2.10113 –
which is easier and hence preferable – cannot be used since its application results in
the following, not provable, proof obligation:

Tarry` Jplum ∧ JTarry ∧ guard of.(proptarry.p.q)
unless
¬guard of.(prop.p.q)

The reason why this cannot be proved is because, during the execution of Tarry, it
is possible that the guard of proptarry.p.q is falsified while the guard of prop.p.q still
holds (see also Section 7.2.3, page 114). For the sake of clarity, we shall elucidate this
below. We rewrite the unless-property from above, using Definition 4.4.143, Theorem
9.1.8159 and Theorem 9.4.5193. (Note that we have omitted evalb and compile):
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∀A ∈ aTarry, s, t ∈ State :
Jplum.s ∧ JTarry.s ∧ ¬s.(idle.p) ∧ ¬sent to all non fathers.p.s
∧ can propagate.p.q.s ∧ s.(le rec.p) ∧ A.s.t
⇒

(Jplum.t ∧ JTarry.t ∧ ¬t.(idle.p) ∧ ¬sent to all non fathers.p.t
∧ can propagate.p.q.t ∧ t.(le rec.p))

∨
(t.(idle.p) ∨ sent to all non fathers.p.t ∨ ¬can propagate.p.q.t)

We have to prove this for arbitrary actions of Tarry. Consider the propagating
action proptarry.p.q′, with (q 6= q′). Assume for arbitrary states s and t that:
A1: Jplum.s ∧ JTarry.s
A2: ¬s.(idle.p) ∧ ¬sent to all non fathers.p.s ∧ can propagate.p.q.s ∧ s.(le rec.p)
A3: proptarry.p.q′.s.t
A4: (q 6= q′)
If p cannot propagate to q′ in state s, then s = t and there is no problem in the sense
that the conclusion of the implication stated above can be proved. However, suppose
p can propagate to q′ (i.e. can propagate.p.q′.s). Then the guard of proptarry.p.q′.s.t
is enabled and execution of this action establishes: ¬t.(le rec.p). Consequently, the
guard of proptarry.p.q is disabled in state t, and in order to prove the conclusion of
the implication we have to prove that the guard of prop.p.q is also disabled in state
t. That is, we have to prove one of:

t.(idle.p) ∨ sent to all non fathers.p.t ∨ ¬can propagate.p.q.t

However,
• t.(idle.p) cannot be proved, since from A2 we know that p is non-idle in state

s, and since prop-actions do not write to idle-variables we know that p is still
non-idle in state t.

• ¬can propagate.p.q.t cannot be proved, since from A2 we know that, in state s,
p can propagate to q (can propagate.p.q.s), and since (q 6= q′) we know that p
can still propagate to q in state t (i.e. can propagate.p.q.t).

• sent to all non fathers.p.t is not necessarily valid. It can hold in state t, but it
might as well be the case that is does not.

Consequently, we cannot prove the unless-property from above. What we need is
a function which is non-increasing with respect to some well-founded relation, and
which decreases when a message is sent. Since then, we can ensure that this kind
of premature falsification of the guard of proptarry.p.q, while the guard of prop.p.q
still holds, cannot happen infinitely often.

As an aside: The guards of idle and done actions in Tarry are equal to those
of PLUM (Theorems 9.4.3193 and 9.4.6193). Consequently, for these actions, a
unless-property similar to the one above can if necessary be proved using unless
Anti-Reflexivity 4.4.344.

For the col-actions, the construction of a non-increasing function is not re-
quired, since we can, if necessary, prove that when the guard of coltarry.p.q
(Theorem 9.4.4193) is falsified, then so is the guard of col.p.q. This is because,
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intuitively, Tarry has the additional invariant that there is always at most one
message in transit. Therefore, if some action coltarry.p.q′ (q 6= q′) receives the
message that is in transit from q′ to p and as a consequence falsifies the guard of
coltarry.p.q by setting le rec.p to true, then we can prove that afterwards there
are no messages at all in transit and hence that the guard of col.p.q cannot be
true.

So, since the least complicated property preservation Theorem (7.2.10113) cannot be
used to derive termination of Tarry, we move on to the second least complicated
one, i.e. 7.2.9113. Since the bitotal relation defined on the actions of PLUM and
Tarry is one-to-one, this one turns out to be sufficient.

Tarry` ini(Tarry.iA.h.prop mes.done mes)  ∀p : p ∈ P : done.p

⇐(Theorem 7.2.9113, 9.1.1157, 8.12.2149, and D.3.11258))
For some well-founded relation ≺:

∃W :: (wTarry = wPLUM ∪W ) ∧ (Jplum C W c) ∧ (wPLUM ⊆ W c)
∧

∀AP AT : AP ∈ aPLUM ∧ AP R plum tarry AT :
Tarry` guard of.AP � guard of.AT

}

reach− part

∧
∃M :: (M C wTarry)
∧
∀k :: Tarry` (Jplum ∧ JTarry ∧M = k) unless (M ≺ k)
∧
∀k AP AT : AP ∈ aPLUM ∧AP R plum tarry AT :

Tarry` (Jplum ∧ JTarry ∧ guard of.AT ∧M = k)
unless
(¬(guard of.AP ) ∨M ≺ k)















































unless− part

Since le rec.p variables are superimposed on PLUM in order to obtain Tarry, the
first conjunct is instantiated with the set {le rec.p | p ∈ P}. Proving that Jplum is
confined by the complement of this set is tedious but straightforward, since the vari-
ables le rec do not appear in it.

Verification of the unless-part involves the construction of a function over the vari-
ables of Tarry, that is non-increasing with respect to some well-founded relation ≺.
From the discussion above, we can deduce that we need a function that decreases
when a message is sent. However, it turns out that the verification of the reach-part
involves an application of � Bounded Progress (4.5.1748) that needs a function
that decreases not only when a message is sent, but also when a message is received.
Consequently, we shall continue with the construction of a function over the variables
of Tarry, that is non-increasing with respect to some well-founded relation ≺, and
that decreases when a message is sent as well as received. Obviously, this function
can then be used for both purposes.
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Construction of a non-increasing function

Constructing a non-increasing function that decreases when a message is sent, and
when a message is received is not complicated. Observe the following:

• the sending of a message is always accompanied by incrementing a nr sent vari-
able

• similarly, receiving a message is always accompanied by incrementing a nr rec
variable

• from Jplum it follows that at most one message is sent over each directed com-
munication link

• consequently, at most one message is received over each directed communication
link

• consequently, the total amount of messages sent and received has an upper-
bound, that equals twice the cardinality of the set of directed communication
links (see Definition 6.2.174)

From these observations a non-increasing function is constructed as follows. First, we
define the upper-bound on the total amount of messages sent and received.

Definition 9.4.7 MAX MAIL

MAX MAIL = 2 × card.(links.P.neighs)
J

Next, we define the total amount of messages that a process p ∈ P has sent, and
respectively received, in some state s.

Definition 9.4.8 number of messages sent by processes p NR SENT

NR SENT.p.s =
∑

q∈neighs.p

s.(nr sent.p.q)

Definition 9.4.9 number of messages received by processes p NR REC

NR REC.p.s =
∑

q∈neighs.p

s.(nr rec.p.q)

J

The total amount of messages that are sent, and respectively received, in the whole
network of processes can be defined as follows:
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Theorem 9.4.12 rec from all p EQ NR REC EQ CARD p

∀p ∈ P, s ∈ State :
Jplum.s

rec from all neighs.p = (NR REC.p.s = card.(neighs.p))

Theorem 9.4.13 sent 2 all p EQ NR SENT EQ CARD p

∀p ∈ P, s ∈ State :
Jplum.s

sent to all neighs.p = (NR SENT.p.s = card.(neighs.p))

Theorem 9.4.14 NR REC leq CARD

∀p ∈ P, s ∈ State :
Jplum.s

NR REC.p.s ≤ card.(neighs.p)

Theorem 9.4.15 NR REC SUC NR SENT IMP not sent 2 all

∀p ∈ P, s ∈ State :
Jplum.s ∧ (NR REC.p.s = NR SENT.p.s + 1)

¬sent to all neighs.p

Theorem 9.4.16 sent 2 all except f IMP SUC NR SENT EQ CARD

∀p ∈ P, s ∈ State :
Jplum.s ∧ sent to all non fathers.p.s ∧ ¬sent to all neighs.p.s

NR SENT.p.s + 1 = card.(neighs.p)

Figure 9.12: Some properties of NR REC and NR SENT
J

Definition 9.4.10 total number of messages sent in the network TOTAL NR SENT

TOTAL NR SENT.s =
∑

p∈P
NR SENT.p.s

Definition 9.4.11 total number of messages received in the network TOTAL NR REC

TOTAL NR REC.s =
∑

p∈P
NR REC.p.s

J

Finally, we define our non-increasing function as follows:

Definition 9.4.17 non-increasing function over the variables of Tarry Y DEF

Y.s = MAX MAIL− (TOTAL NR SENT.s + TOTAL NR REC.s)
J
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The value of Y only depends on the variables nr rec and nr sent. Since these are write
variables of Tarry is it easy to verify that:

Theorem 9.4.18 CONF Y Write Vars Tarry

Y C wTarry
J

The following lemma states that whenever a message is sent or received – because the
guard of one of Tarry’s actions is enabled – the value of Y decreases.

Lemma 9.4.19 A DECR Y

For arbitrary processes p ∈ P, q ∈ neighs.p, and actions A;
A ∈ {idleTarry, colTarry, propTarry, doneTarry}:

∀k ::
Jplum.s ∧A.p.q.s.t ∧ guard of.(A.p.q).s ∧ (Y.s = k)

Y.t < k
J

Using this lemma, it is straightforward to prove that, during the execution of Tarry,
Y is non-increasing with respect to the well-founded relation < on numerals.

Theorem 9.4.20 DECREASING DECR FUNCTION

For arbitrary characterisations of JTarry:

∀k :: Tarry` (Jplum ∧ JTarry ∧ Y = k) unless (Y < k)
J

Verification of the unless-part

Return to page 195 for the unless-part. Instantiating this proof obligation with Y ,
and rewriting with Theorems 9.4.18198 and 9.4.20198 results in the following proof
obligation:

∀k AP AT : AP ∈ aPLUM ∧AP R plum tarry AT :
Tarry` (Jplum ∧ JTarry ∧ guard of.AT ∧ Y = k)

unless
(¬(guard of.AP ) ∨ Y < k)

Proving this is straightforward using the characterisation of R plum Tarry from Figure
8.13148, and Lemma 9.4.19198. Note that, since Y is constructed as to decrease when
a message is sent as well as when a message is received, we do not have to use the
proof strategy delineated in the aside on page 194 for the col actions. Consequently,
constructing a non-increasing function that decreases upon the sending as well as
upon receiving of a message is not only more efficient since it is re-usable in the proof
of the reach-part, it also simplifies the verification of the unless-part.
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Verification of the reach-part

We shall now continue with the reach-part, which is re-displayed below for conve-
nience.

∀AP AT : AP ∈ aPLUM ∧ AP R plum tarry AT :
Tarry` guard of.AP � guard of.AT

Subsequently, using:
• the characterisation of R plum Tarry (Figure 8.13148)
• Theorems 9.4.3193 and 9.4.6193, stating that the guards of the idleTarry, and

doneTarry actions are equal to those of PLUM
• reflexivity of � (Theorem 4.5.847)
• the implicit assumption stating stability of (Jplum ∧ JTarry)

we reduce the reach-part for arbitrary p ∈ P and q ∈ neighs.p, as follows:

Tarry` guard of.(col.p.q) � guard of.(colTarry.p.q)
}

reach− col− part
∧

Tarry` guard of.(prop.p.q) � guard of.(propTarry.p.q)
}

reach− prop− part

Verification of reach-col-part

Rewriting with the characterisations of the guards (Theorem 9.1.7159 and 9.4.4193)
gives:

Tarry` ¬idle.p ∧mit.q.p ∧ ¬rec from all neighs.p
�
¬idle.p ∧mit.q.p ∧ ¬rec from all neighs.p ∧ ¬le rec.p

Due to the alternating sending and receiving of messages, which is inherent to Tarry,
we know that it must be provable that there is always at most one message in transit
during the execution of Tarry’s algorithm. This means that if there is a message
in transit, it is the only one, and hence the event last executed by all processes was
a send-event and thus not a receive-event. Consequently, the above proof obligation
must be provable from the invariant, by using � Introduction (4.5.747). In order
to establish this we propose the following invariant-candidate:

QPPPPPPR cJ 1
Tarry = (∃p ∈ P, q ∈ neighs.p : mit.p.q) ⇒ (∀p ∈ P : ¬le rec.p)

which, evidently, suffices to establish the reach-col-part.

Verification of reach-prop-part

Rewriting with the characterisations of propTarry’s the guard (9.4.5193) gives:

Tarry` guard of.(prop.p.q) � guard of.(prop.p.q) ∧ le rec.p



200 Formally proving the correctness of distributed hylomorphisms

If p’s last event was a receive event this is easy to prove:

⇐(� Case Distinction (4.5.1047), p’s last event was a receive event or not)
Tarry` guard of.(prop.p.q) ∧ le rec.p � guard of.(prop.p.q) ∧ le rec.p

∧
Tarry` guard of.(prop.p.q) ∧ ¬le rec.p � guard of.(prop.p.q) ∧ le rec.p

⇐(� Reflexivity (4.5.847), proves the first conjunct)
Tarry` guard of.(prop.p.q) ∧ ¬le rec.p � guard of.(prop.p.q) ∧ le rec.p

To explain the proof-strategy that is used to verify the conjunct from above, we
refer to Figure 9.13201. The p and q in this figure correspond to the p and q in the
current proof-obligation, x, y, z, and w are arbitrary processes. We already indicated
that, during an execution of Tarry’s algorithm, there is always at most one message
in transit. This message is indicated with a • in Figure 9.13. In Figure 9.13(b),
this message is in transit from w to z, and hence from invariant-candidate cJ 1

Tarry
we can infer that ∀p ∈ P : ¬le rec.p In 9.13(a) this message has just been received
by x, and hence we can infer that le rec.x. In order to establish our current proof
obligation, we need to invent a proof strategy that enables us to prove that this
message shall eventually reach p such that the latter can set le rec.p to true. Suppose
that guard of.(prop.p.q) holds, and that the last event of p was not a receive event.
Using Theorem 9.1.8159):

¬idle.p ∧ cp.p.q ∧ ¬sent to all non fathers.p ∧ ¬le rec.p (☼)

If the current situation is that of Figure 9.13(a), then x has just received the message,
and hence le rec.x holds. Since we have assumed that ¬le rec.p, we know that (x 6= p).
There are now two possibilities: either propTarry.x.y or action doneTarry.x.y is en-
abled (y is arbitrary) and will execute. Consequently, we know that a message will
be sent and hence that Y will decrease. Since (x 6= p), we know that (☼) still holds,
and subsequently, we have arrived in a situation similar to that of Figure 9.13(b).

If the current situation is that of Figure 9.13(b), then either idleTarry.z.w or action
colTarry.z.w is enabled. If (z = p), then we know that le rec.p will become true,
and hence we are ready. If (z 6= p), then we know that, since the message will be
received by z, again Y shall decrease. Since (z 6= p), we know that (☼) still holds,
and subsequently, we have arrived again in a situation similar to that of Figure 9.13(a).

Since we have already proved that Y is a non-increasing function with respect to the
well-founded relation <, we know that we cannot infinitely proceed from the situation
in Figure 9.13(a) to the situation in Figure 9.13(b). Therefore, we shall eventually
end in Figure 9.13(b) where (z = p), and hence le rec.p will be set to true.

Tarry` guard of.(prop.p.q) ∧ ¬le rec.p � guard of.(prop.p.q) ∧ le rec.p
⇐(� Bounded Progress (4.5.1748), using Y )

Tarry` guard of.(prop.p.q) ∧ ¬le rec.p ∧ (Y = k)
�
guard of.(prop.p.q) ∧ ((¬le rec.p ∧ (Y < k)) ∨ (le rec.p))
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•x

y

q

p

z

q

p
w

•

∀x ∈ P : ¬le rec.x

∃x ∈ P : le rec.x

(a)

(b)

Figure 9.13: Possible situations when guard of.(prop.p.q) ∧ ¬le rec.p holds
J
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⇐(� Case distinction (4.5.1047): situation of Figure 9.13(a), or 9.13(b))
Tarry` guard of.(prop.p.q) ∧ ¬le rec.p ∧ (Y = k) ∧ (∃x ∈ P : le rec.x)

�
guard of.(prop.p.q) ∧ ((¬le rec.p ∧ (Y < k)) ∨ (le rec.p))







9.13(a)

∧
Tarry` guard of.(prop.p.q) ∧ ¬le rec.p ∧ (Y = k) ∧ (∀p ∈ P : ¬le rec.p)

�
guard of.(prop.p.q) ∧ ((¬le rec.p ∧ (Y < k)) ∨ (le rec.p))







9.13(b)

Verification of 9.13(a)

We shall proceed with proof-obligation 9.13(a), using the proof-strategy explained
above. That is, we shall need to decompose the proof-obligation in such a way
that we can use � Introduction (4.5.747) to prove that either propTarry.x.y or
doneTarry.x.y will decrease Y . First, we shall identify process x (from Figure 9.13(a))
in the left hand side of � as follows:

Tarry` guard of.(prop.p.q) ∧ ¬le rec.p ∧ (Y = k) ∧ (∃x ∈ P : le rec.x)
�
guard of.(prop.p.q) ∧ ((¬le rec.p ∧ (Y < k)) ∨ (le rec.p))

⇐ (� Substition (4.5.647), � Disjunction (4.5.1347),
and (x 6= p) since (¬le rec.p ∧ le rec.x))

∀x ∈ P, (x 6= p) :
Tarry` guard of.(prop.p.q) ∧ ¬le rec.p ∧ (Y = k) ∧ le rec.x

�
guard of.(prop.p.q) ∧ ((¬le rec.p ∧ (Y < k)) ∨ (le rec.p))

Whether propTarry.x.y or doneTarry.x.y is the action that will decrease Y , depends
on whether x has sent to all non fathers, or not. Therefore, we proceed making the
following case distinction:

⇐(� Case Distinction (4.5.1047))
∀x ∈ P, (x 6= p) :

Tarry` guard of.(prop.p.q) ∧ ¬le rec.p ∧ (Y = k)
∧ le rec.x ∧ ¬sent to all non fathers.x
�
guard of.(prop.p.q) ∧ ((¬le rec.p ∧ (Y < k)) ∨ (le rec.p))















9.13(a)
−prop

∧
Tarry` guard of.(prop.p.q) ∧ ¬le rec.p ∧ (Y = k)

∧ le rec.x ∧ sent to all non fathers.x
�
guard of.(prop.p.q) ∧ ((¬le rec.p ∧ (Y < k)) ∨ (le rec.p))















9.13(a)
−done

Verification of 9.13(a)-prop

The proof strategy for 9.13(a)-prop shall consists of using � Introduction (4.5.747),
and proving that, for some y, propTarry.x.y ensures that the value of Y decreases.
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Consequently, we have to substitute the left hand side � in such a way that it implies
the existence of an y such that the guard of propTarry.x.y holds. In order to be able
to do this it suffices to prove that for arbitrary states s:

Jplum.s ∧ JTarry.s ∧ s.(le rec.x) ∧ ¬sent to all non fathers.x.s
⇒
∃y ∈ neighs.x : ¬idle.x ∧ cp.x.y.s ∧ ¬sent to all non fathers.x.s ∧ s.(le rec.x)

Using Theorem 9.1.10161, and cJ 2
PLUM from Jplum, it is straightforward to prove that:

Theorem 9.4.21 not sent 2 all except f IMP cp

∀p ∈ P :
Jplum.s ∧ ¬sent to all non fathers.p.s

∃q ∈ neighs.p : cp.p.q.s
J

Consequently, it remains to prove that x is non-idle. Since the fact that x has
not sent to all non fathers is not sufficient to deduce this, we need a new invariant-
candidate for JTarry. Evidently, the one that suffices here is:

QPPPPPPR cJ 2
Tarry = ∀p ∈ P : le rec.p ⇒ ¬idle.p

Subsequently, 9.13(a)-prop is established as follows:

⇐(� Substitution (4.5.647), cJ 2
Tarry, and Theorems 9.4.5193 and 9.4.21203)

∀x ∈ P, (x 6= p) :
Tarry` ∃y ∈ neighs.x :

guard of.(prop.p.q) ∧ ¬le rec.p ∧ (Y = k) ∧ guard of.(propTarry.x.y)
�
guard of.(prop.p.q) ∧ ((¬le rec.p ∧ (Y < k)) ∨ (le rec.p))

⇐(� Disjunction (4.5.1347), � Introduction (4.5.747))
∀x ∈ P, (x 6= p), y ∈ neighs.x :

Tarry` Jplum ∧ JTarry

∧ guard of.(prop.p.q) ∧ ¬le rec.p ∧ (Y = k) ∧ guard of.(propTarry.x.y)
ensures
guard of.(prop.p.q) ∧ ((¬le rec.p ∧ (Y < k)) ∨ (le rec.p))

Proving this ensures-property is straightforward using Lemma 9.4.19198.

Verification of 9.13(a)-done

The proof strategy for 9.13(a)-done is similar to that of 9.13(a)-prop. That is, we
use � Introduction (4.5.747) and prove that doneTarry.x.y ensures that the value
of Y decreases. Again we have to substitute the left hand side � in such a way that it
implies the guard of doneTarry.x.y. However, since the guard of doneTarry is never
enabled for the starter, we first have to prove that (x 6= starter). In order to do this
we prove 9.13(a)-done for the case when (x = starter) and (x 6= starter).
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Verification of 9.13(a)-done when x = starter

We have to prove that, when (starter 6= p),

Tarry` guard of.(prop.p.q) ∧ ¬le rec.p ∧ (Y = k)
∧ le rec.starter ∧ sent to all non fathers.starter
�
guard of.(prop.p.q) ∧ ((¬le rec.p ∧ (Y < k)) ∨ (le rec.p))

Since the guard of doneTarry is never enabled for the starter, the only possible way
to proceed here is: use � Introduction (4.5.747), and subsequently prove that the
left hand side of the � in conjunction with Jplum and JTarry evaluates to false. So
assume, for some state s, it holds that:
A1 : Jplum.s ∧ JTarry.s
A2 : guard of.(prop.p.q).s ∧ ¬s.(le rec.p)
A3 : s.(le rec.starter) ∧ sent to all non fathers.starter.s
We shall now try to reach a contradiction. From A2, we can, using Definitions 8.7.2136

through 8.7.7136 and 9.1.8159, deduce that:
A4: ¬done.p.s
As a result, from Theorem 9.1.42183 together with assumptions A1, A2, and A4, we
can infer that:
A5: ¬done.starter.s
From Theorem 9.1.37180 and assumption A3, we can derive that:
A6: sent to all neighs.starter
Since the starter’s last event was a receive event, we can argue, due to the alternat-
ing send and receive behaviour of Tarry, that the starter has rec from all neighs,
and consequently (A6 and Definition 8.7.7136) is done. Obviously, this establishes
the desired contradiction with assumption A5. In order to be able to prove that the
starter is indeed done, we need to introduce a new invariant-candidate for Tarry.
Since initially, the le rec variable of the starter is set to true, we state the following
candidate:

QPPPPPPRcJ 3
Tarry = le rec.starter ⇒ (NR SENT.starter = NR REC.starter)

∧
¬le rec.starter ⇒ (NR SENT.starter = NR REC.starter + 1)

Using 9.4.12197 and 9.4.13197, this candidate suffices to prove – under the assumptions
stated above – that the starter is done.

Verification of 9.13(a)-done when x 6= starter

Now we know that x is not the starter, we have to substitute the left hand side of
� in such a way that it implies the guard of doneTarry.x.y. According to Theorems
9.4.6193, 9.1.9159 and Definition 8.7.4136, it suffices to prove that for arbitrary states s:
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Jplum.s ∧ JTarry.s ∧ s.(le rec.x) ∧ sent to all non fathers.x.s
⇒
∃y ∈ neighs.x : rec from all neighs.x.s

∧ sent to all non fathers.x.s
∧ ¬sent to all neighs.x.s
∧ (y = (father.x))

Similar to the line of reasoning above, we introduce the following invariant-candidate
for this purpose:

QPPPPPPRcJ 4
Tarry = ∀p ∈ P : le rec.p ⇒ (NR REC.p = NR SENT.p + 1)

∧
¬le rec.p ⇒ (NR REC.p = NR SENT.p)

Subsequently, 9.13(a)-done for the case that (x 6= starter) is established as follows:

⇐(� Substitution (4.5.647), cJ 4
Tarry, 9.1.9159, 9.4.6193, 9.4.12197, and 9.4.16197)

∀x ∈ P, (x 6= p), (x 6= starter) :
Tarry` ∃y ∈ neighs.x :

guard of.(prop.p.q) ∧ ¬le rec.p ∧ (Y = k) ∧ guard of.(doneTarry.x.y)
�
guard of.(prop.p.q) ∧ ((¬le rec.p ∧ (Y < k)) ∨ (le rec.p))

⇐(� Disjunction (4.5.647), � Introduction (4.5.747))

∀x ∈ P, (x 6= p), (x 6= starter) :
Tarry` Jplum ∧ JTarry

guard of.(prop.p.q) ∧ ¬le rec.p ∧ (Y = k) ∧ guard of.(doneTarry.x.y)
ensures
guard of.(prop.p.q) ∧ ((¬le rec.p ∧ (Y < k)) ∨ (le rec.p))

Proving this ensures-property is straightforward using Lemma 9.4.19198.

Verification of 9.13(b)

For convenience, the proof obligation tackled in in this section is re-displayed below
(from page 202):

Tarry` guard of.(prop.p.q) ∧ ¬le rec.p ∧ (Y = k) ∧ (∀p ∈ P : ¬le rec.p)
�
guard of.(prop.p.q) ∧ ((¬le rec.p ∧ (Y < k)) ∨ (le rec.p))

Here we shall employ the proof-strategy explained on page 200. That is, we shall need
to decompose the proof-obligation in such a way that we can use � Introduction
(4.5.747) to prove that either idleTarry or colTarry decreases Y or establishes le rec.p.
From Figure 9.13(b), we know that in this situation, there is a message in transit
somewhere in the network. Moreover, using cJ 4

PLUM, cJ 2
PLUM, cJ 2

PLUM and Definition
8.7.1136, it is not hard to prove that:
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Theorem 9.4.22 mit IMP not rec from all neighs

∀p ∈ P, q ∈ neighs.p :
Jplum.s ∧mit.q.p.s

¬rec from all neighs.p.s
J

Consequently, we can substitute the left hand side of � as follows: (we use the names
z and w since these correspond to Figure 9.13(b))

⇐(� Substitution (4.5.647), cJ 1
Tarry, Theorem 9.4.22206)

Tarry` ∃z ∈ P, w ∈ neighs.z :
guard of.(prop.p.q) ∧ ¬le rec.p ∧ (Y = k) ∧ (∀p ∈ P : ¬le rec.p)
∧ mit.w.z ∧ ¬rec from all neighs.z
�
guard of.(prop.p.q) ∧ ((¬le rec.p ∧ (Y < k)) ∨ (le rec.p))

⇐(� Disjunction (4.5.1347))
∀z ∈ P, w ∈ neighs.z :

Tarry` guard of.(prop.p.q) ∧ ¬le rec.p ∧ (Y = k) ∧ (∀p ∈ P : ¬le rec.p)
∧ mit.w.z ∧ ¬rec from all neighs.z
�
guard of.(prop.p.q) ∧ ((¬le rec.p ∧ (Y < k)) ∨ (le rec.p))

If (z = p), the proof obligation from above can be proved using � Introduction
(4.5.747), since execution of colTarry.p.w will ensure that le rec.p is set to true.

Suppose (z 6= p). Whether idleTarry.z.w or colTarry.z.w is the action that will de-
crease Y , depends on whether z is idle or not. Therefore, we proceed as follows:

⇐(� Case Distinction (4.5.1047))
∀z ∈ P, w ∈ neighs.z, (z 6= p) :

Tarry` guard of.(prop.p.q) ∧ ¬le rec.p ∧ (Y = k) ∧ (∀p ∈ P : ¬le rec.p)
∧ mit.w.z ∧ ¬rec from all neighs.z ∧ idle.z
�
guard of.(prop.p.q) ∧ ((¬le rec.p ∧ (Y < k)) ∨ (le rec.p))

∧
Tarry` guard of.(prop.p.q) ∧ ¬le rec.p ∧ (Y = k) ∧ (∀p ∈ P : ¬le rec.p)

∧ mit.w.z ∧ ¬rec from all neighs.z ∧ ¬idle.z
�
guard of.(prop.p.q) ∧ ((¬le rec.p ∧ (Y < k)) ∨ (le rec.p))

⇐(� Substitution (4.5.647) on both conjuncts, using 9.1.6159, 9.1.7159, 9.4.3193,
9.4.4193)
∀z ∈ P, w ∈ neighs.z, (z 6= p) :

Tarry` guard of.(prop.p.q) ∧ ¬le rec.p ∧ (Y = k) ∧ (∀p ∈ P : ¬le rec.p)
∧ guard of.(idleTarry.z.w)
�
guard of.(prop.p.q) ∧ ((¬le rec.p ∧ (Y < k)) ∨ (le rec.p))

∧
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Tarry` guard of.(prop.p.q) ∧ ¬le rec.p ∧ (Y = k) ∧ (∀p ∈ P : ¬le rec.p)
∧ guard of.(colTarry.z.w)
�
guard of.(prop.p.q) ∧ ((¬le rec.p ∧ (Y < k)) ∨ (le rec.p))

Both conjuncts can be proved using � Introduction (4.5.747), and Lemma 9.4.19198.

This ends the verification of 9.13(b), and hence of the reach-prop-part (page 199),
and consequently of the termination of Tarry. The one thing that remains to be
done, is constructing Tarry’s additional invariant. Gathering all the candidates in-
troduced (i.e. cJ 1

Tarry through cJ 4
Tarry), analysing them, and verifying the stability of

their conjunction results in the need to introduce yet three more invariant-candidates.
Again, since the verification activities are not all that exciting, we shall just state the
required candidates. The first one comes as no surprise and states that, if there is a
message in transit it is the only one:

QPPPPPPRcJ 5
Tarry = ∀p, x ∈ P, q ∈ neighs.p, y ∈ neighs.x :

mit.p.q ∧mit.x.y ⇒ (p = x) ∧ (q = y)

The second and the third one together state that if there is no message in transit,
then there is exactly one process that has received a message:

QPPPPPPR cJ 6
Tarry = ¬(∃p ∈ P, q ∈ neighs.p : mit.p.q) ⇒ (∃p ∈ P : le rec.p)

QPPPPPPR cJ 7
Tarry = ∀p, q ∈ P : le rec.p ∧ le rec.q ⇒ (p = q)

Since cJ 1
Tarry and cJ 6

Tarry can be coalesced into one candidate using equality, we have
derived a characterisation of JTarry that is displayed in Figure 9.14.

9.5 Proving termination of DFS

This section shall describe how termination of the DFS algorithm is proved using the
refinements framework from Chapter 7, and the already proven fact that:

∀J :: Tarry vR Tarry dfs, J DFS

The UNITY specification reads:

Theorem 9.5.1 HYLO DFS

∀iA, h, prop mes, done mes ::
Jplum ∧ JTarry ∧ Jdfs dfs.iA.h.prop mes.done mes ` ini(DFS.iA.h.prop mes.done mes)

 
∀p : p ∈ P : done.p

J
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Definition 9.4.23 Tarry’s additional invariant Invariant Tarry Part

JTarry =

(∃p ∈ P, q ∈ neighs.p : mit.p.q) = (∀p ∈ P : ¬le rec.p) cJ 1
Tarry, cJ 6

Tarry
∧ ∀p ∈ P : le rec.p ⇒ ¬idle.p cJ 2

Tarry
∧ le rec.starter ⇒ (NR SENT.starter = NR REC.starter)

∧ ¬le rec.starter ⇒ (NR SENT.starter = NR REC.starter + 1) cJ 3
Tarry

∧ ∀p ∈ P : le rec.p ⇒ (NR REC.p = NR SENT.p + 1)
∧ ¬le rec.p ⇒ (NR REC.p = NR SENT.p) cJ 4

Tarry

∧ ∀p, x ∈ P, q ∈ neighs.p, y ∈ neighs.x :
mit.p.q ∧mit.x.y ⇒ (p = x) ∧ (q = y) cJ 5

Tarry
∧ ∀p, q ∈ P : le rec.p ∧ le rec.q ⇒ (p = q) cJ 7

Tarry

Theorem 9.4.24 STABLEe Invariant Tarry

Tarry`�Jplum ∧ JTarry

Theorem 9.4.25 INVe Invariant Tarry

Tarry` �Jplum ∧ JTarry

Figure 9.14: Tarry’s invariant
J

where invariant Jdfs captures additional safety properties for DFS (if any). Using �
Preservation Theorem 7.2.12112, it is straightforward to derive:

Theorem 9.5.2 STABLEe Invariant in DFS

DFS`�(Jplum ∧ JTarry)
J

The stability of: DFS`�(Jplum ∧JTarry ∧Jdfs) will be implicitly assumed throughout
the verification process. For ease of reference, Figure 9.15 displays theorems about
the guards of DFS’s actions. And again, for readability we introduce the notational
convention that:

` and dfs` now abbreviate Jplum ∧ JTarry ∧ Jdfs dfs.iA.h.prop mes.done mes `

for arbitrary iA ∈ Expr, h ∈ P→Expr→Expr, prop mes ∈ P→Expr, and done mes
∈ P→Expr, for which hold that:

∀p, e : p ∈ P ∧ e C wPLUM : (h.p.e) C wPLUM
∀p : p ∈ P : PROP mes.p C wPLUM ∧ DONE mes.p C wPLUM
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Theorem 9.5.3 guard of IDLE DFS

guard of.(idledfs.p.q) = guard of.(idleTarry.p.q)

Theorem 9.5.4 guard of COL DFS

guard of.(coldfs.p.q) = guard of.(colTarry.p.q)

Theorem 9.5.5 guard of PROP lp rec DFS

guard of.(prop lp rec.p.q) = guard of.(propTarry.p.q) ∧ q = lp rec.p

Theorem 9.5.6 guard of PROP not lp rec DFS

guard of.(prop not lp rec.p.q) = guard of.(propTarry.p.q) ∧ ¬cp.p.(lp rec.p)

Theorem 9.5.7 guard of DONE DFS

guard of.(donedfs.p.q) = guard of.(doneTarry.p.q)

Figure 9.15: Guards of the actions from DFS
J

To remind the reader of the reason why we need to assume confinement by PLUM’s
write variables and not DFS’s write variables, he or she is referred to page 192.

Again, we implicitly assume the validity of distinct DFS Vars (see Definition D.4.4259),
ASYNC type decl.P.neighs, and Connected Network.P.neighs.starter.

9.5.1 Using refinements to derive termination of DFS

As indicated in Chapter 8, termination of DFS is proved using property preserv-
ing Theorem 7.2.7113. The reasons for using this Theorem are twofold. First, since
every prop action in Tarry is bitotally related to two actions in DFS (namely
prop lp rec and prop not lp rec), we need to be able to pick one of those DFS
prop-actions when proving that the guards of Tarry’s prop-actions eventually im-
plies the guards of related DFS’s prop-actions. Consequently, we cannot use preser-
vation theorems 7.2.10113 or 7.2.9113. The second reason for using 7.2.7113 is not
because 7.2.8113 cannot be used, but because it reduces proof effort. As we have seen
during Tarry’s verification, Lemma 9.4.19198 was very useful when proving unless
and ensures properties that involved Y . A similar lemma can easily be proved for the
actions of DFS, and hence verification of unless and ensures properties involving Y in
the context of DFS will be simple too.
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Lemma 9.5.8 A DECR Y

For arbitrary processes p ∈ P, q ∈ neighs.p, and actions
A ∈ {idledfs, coldfs, prop lp rec, prop not lp rec, donedfs}:

∀k ::
Jplum.s ∧A.p.q.s.t ∧ guard of.(A.p.q).s ∧ (Y.s = k)

Y.t < k
J

Therefore, we decided to use 7.2.7113, although a function that is non-increasing with
respect to some well-founded relation is not needed in order to be able to prove that
falsification of the guards of DFS’s prop-actions go hand in hand with the falsification
of the guards of Tarry’s prop-actions.

As a result, the initial specification stating termination of DFS is decomposed as
follows:

dfs` ini(dfs.iA.h.prop mes.done mes)  ∀p : p ∈ P : done.p

⇐(Theorem 7.2.8113, 9.4.1192, 8.12.3149, and D.4.12260))
For some well-founded relation ≺:

∃W :: (wDFS = wTarry ∪W ) ∧ ((Jplum ∧ JTarry) C W c) ∧ (wTarry ⊆ W c)
∧

∀AD : AD ∈ aDFS ∧ (∃AT :: AT ∈ aTarry ∧ (AT R Tarry dfs AD)) :
(guard of.AD C wDFS)

∧
∀AT AD : AT ∈ aTarry

dfs` guard of.AT
�
(∃AD :: (AT R Tarry dfs AD) ∧ guard of.AD)















reach− part

∧
∃M :: (M C wDFS)
∧
∀k :: DFS` (Jplum ∧ JTarry ∧ Jdfs ∧M = k) unless (M ≺ k)
∧
∀k AT AD : AT ∈ aTarry ∧AT R Tarry dfs AD :

dfs` (Jplum ∧ JTarry ∧ Jdfs ∧ guard of.AD ∧M = k)
unless
(¬(guard of.AT ) ∨M ≺ k)















































unless− part

Since lp rec.p variables are superimposed on Tarry in order to obtain DFS, the first
conjunct is instantiated with the set {lp rec.p | p ∈ P}. Proving that Jplum and
JTarry are confined by the complement of this set is tedious but straightforward,
since the variables le rec do not appear in it. Similarly, proving that the guards of
the actions in DFS are confined by DFS’s write variables (i.e. the second conjunct)
is not complicated.
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The unless-part is now easy to prove by instantiating with Y (Definition 9.4.17197):
• proving that Y is confined by the write variables of DFS is easy using Theorem

9.4.18198 and monotonicity of confinement 3.3.1928

• proving that Y is non-increasing in DFS, can be proved using unless preserva-
tion Theorem 8.10.3145, and Theorem 7.2.11112.

• proving that falsification of the guards of DFS’s actions go hand in hand with
the falsification of the guards of related Tarry’s actions is easy using Lemma
9.5.8210.

For the reach-part, the idle, col, and done cases can be proved using � Intro-
duction (4.5.747). As a consequence, we are left with the prop case:

dfs` guard of.(propTarry.p.q)
�
(∃AD :: (propTarry.p.q R Tarry dfs AD) ∧ guard of.AD)

This case states that: from a situation in which guard of.(prop.p.q) holds, we will
eventually reach a situation in which either the guard of action prop lp rec.p.q or
prop not lp rec.p.q holds. To explain the proof-strategy that is used to verify this
proof obligation, we refer to Figure 9.16. The p and q in the picture correspond to
the p and q in the proof obligation, z is an arbitrary process. In Figure 9.16 we are
in the situation that the guard of propTarry.p.q holds, that is (Theorem 9.4.5193):

guard of.(prop.p.q) ∧ le rec.p

Process p has just received the message, and therefore is the only process that can do
something. There are now two possibilities:

q = lp rec.p In this case the guard of prop lp rec.p.q holds and we are done.

q 6= lp rec.p In this case the guard of prop lp rec.p.q cannot hold. Again there are
two possibilities:

¬ cp.p.(lp rec.p) , that is p is not allowed to propagate a message to the process it
has received its last message from. In this case, p can pick any non-father-
neighbour to which it has not yet sent a message. Evidently, we can pick q, and
as a consequence, the guard of prop not lp rec.p.q is enabled.

cp.p.(lp rec.p) In this case p has to send a message to the process it has received its
last message from, and since this is not q, neither the guard of prop lp rec.p.q
nor prop not lp rec.p.q holds. If z (from Figure 9.16) is equal to lp rec.p,
then the guard of prop lp rec.p.z is enabled and consequently p shall send a
message to z. Since (z 6= q), we know that afterwards the following holds:

guard of.(prop.p.q) ∧ ¬le rec.p

Now we find ourself in the situation in Figure 9.13201(b), from which we can
transfer to situation in Figure 9.13201(a) or Figure 9.16. Again, a well-foundedness
argument, using � Bounded Progress (4.5.1748), shall enable us to prove that
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z

q

•p

Figure 9.16: Situation when guard of.(prop.p.q) ∧ le rec.p holds
J

we cannot infinitely go back and forth between these situations, and therefore
that eventually the guard of prop lp rec.p.q or prop not lp rec.p.q will be
enabled.

Consequently, when we use non-increasing function Y again for this well-foundedness
argument, the proof of DFS’s reach-prop-part shall resemble that of Tarry’s (see
page 200). Therefore we shall only present the begin of the proof, which is slightly
different from Tarry.

dfs` guard of.(propTarry.p.q)
�
(∃AD :: (propTarry.p.q R Tarry dfs AD) ∧ guard of.AD)

⇐(� Case Distinction (4.5.1047))
dfs` guard of.(propTarry.p.q) ∧ q = lp rec.p

�
(∃AD :: (propTarry.p.q R Tarry dfs AD) ∧ guard of.AD)

∧
dfs` guard of.(propTarry.p.q) ∧ q 6= lp rec.p

�
(∃AD :: (propTarry.p.q R Tarry dfs AD) ∧ guard of.AD)

⇐(� Introduction (4.5.747), and 9.5.5209 proves first conjunct,
� Case Distinction (4.5.1047) on second conjunct)

dfs` guard of.(propTarry.p.q) ∧ q 6= lp rec.p ∧ ¬cp.p.(lp rec.p)
�
(∃AD :: (propTarry.p.q R Tarry dfs AD) ∧ guard of.AD)
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∧
dfs` guard of.(propTarry.p.q) ∧ q 6= lp rec.p ∧ cp.p.(lp rec.p)

�
(∃AD :: (propTarry.p.q R Tarry dfs AD) ∧ guard of.AD)

⇐(� Introduction (4.5.747), and 9.5.6209 proves first conjunct,
� Transitivity (4.5.947) on second conjunct)

dfs` guard of.(propTarry.p.q) ∧ q 6= lp rec.p ∧ cp.p.(lp rec.p)
�
guard of.(prop.p.q) ∧ ¬le rec.p

∧
dfs` guard of.(prop.p.q) ∧ ¬le rec.p

�
(∃AD :: (propTarry.p.q R Tarry dfs AD) ∧ guard of.AD)

⇐(� Introduction (4.5.747), prop lp rec.p.(lp rec.p) establishes ¬ le rec.p,
� Bounded Progress (4.5.1748) on second conjunct)

dfs` guard of.(prop.p.q) ∧ ¬le rec.p ∧ (Y = k)
�
(guard of.(prop.p.q) ∧ ¬le rec.p ∧ (Y < k))
∨
(∃AD :: (propTarry.p.q R Tarry dfs AD) ∧ guard of.AD)

From here, the proof is similar to that of Tarry (starting at page 200), and hence
is not repeated. We end the verification of DFS’s termination by observing that the
verification of DFS did not need any more safety properties, and thus that Jdfs can
defined to be true.

Definition 9.5.9 Invariant DFS

Jdfs = true
J

9.6 Concluding remarks

Although this is a tough chapter to read (as well as write), we think we have suc-
ceeded in presenting intuitive and structured proofs of the correctness of distributed
hylomorphisms with respect to their termination. Due to the incremental, demand-
driven construction of the invariant, the latter is not “pulled out of a hat” [Cho95],
and the purpose of its various conjuncts are well motivated. Moreover, since, various
property preservation theorems are necessary throughout the verification process, this
chapter also serves as an illustration of the usage and effectiveness of the refinement
framework from Chapter 7.
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Appendix A

Miscellaneous notation,
theories and theorems

This appendix presents miscellaneous notation, theories and theorems that appear
throughout this thesis. Although of some concepts treated in this appendix it can be
assumed that everyone has a notion of what they mean, the reason that a separate
chapter in devoted to these concepts is to obtain unequivocalness when referring to
them. For experience shows that minor differences between the notions people have
about formal concepts, can cause confusion and misunderstanding. Moreover, when
theorem provers are used, absolute accuracy is mandatory.

A.1 Universal and existential quantification

Universal quantification is denoted by: ∀x :: P.x
Restricted universal quantification is denoted by: ∀x : Q.x : P.x,
meaning: (∀x :: Q.x ⇒ P.x)
When restricting predicate Q involves set membership in some set S (for example Q.x
equals x ∈ S), we also write: ∀x ∈ S : P.x.

Existential quantification is denoted by: ∃x :: P.x
Restricted existential quantification is denoted by: ∃x : Q.x : P.x,
meaning: (∃x :: Q.x ∧ P.x)
When restricting predicate Q involves set membership in some set S (for example Q.x
equals x ∈ S), we also write: ∃x ∈ S : P.x.

A.2 Functions

The fact that x is an element of type t is denoted by x ∈ t. Consequently, a function
f with source type s and target type t is denoted by f ∈ s→t.
Function application is denoted by a dot, i.e. for function f ∈ s→t, applying f to

215
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some x from s is denoted by f.x.

Sectioning infix operators to convert them to prefix higher order functions (i.e. sec-
tions), is done by simply using the infix operator as a prefix. More formally:

e1 ⊕ e2 is sectioned by writing ⊕.e1.e2

Let f ∈ α→β, g ∈ γ→α, A be a set with elements of type α, and B a set with
elements of type β.

Definition A.2.1 function composition o DEF

∀f g :: f ◦ g = (λx. f.(g.x))

Definition A.2.2 split split

∀f x :: split.f.x = (f.x, x)

Definition A.2.3 Convert function to a relation F2R DEF

∀f :: f2r.f = (λx y.y = (f.x))

Definition A.2.4 Surjection SURJECTION DEF

∀f A B :: surjection.f.A.B = (∀x :: (x ∈ A) ⇒ (f.x ∈ B))
∧ (∀y :: (y ∈ B) ⇒ (∃x :: (x ∈ A) ∧ (y = f.x)))

Definition A.2.5 Injection INJECTION DEF

∀f A :: injection.f.A = (∀x, y ∈ A : ((f.x) = (f.y)) ⇒ (x = y))

Definition A.2.6 Bijection BIJECTION DEF

∀f A B :: bijection.f.A.B = (surjection.f.A.B) ∧ (injection.f.A)

A.3 Relations

Let R ∈ α→β→bool, S ∈ β→γ→bool, A be a set with elements of type α and B a set
with elements of type β.

Definition A.3.1 Relation composition rSEQ

∀R S :: R ◦ S = (λx y.∃z :: xRz ∧ zSy)

Definition A.3.2 Junction junc DEF

∀R S A B :: (ROS).A.B.x.y = (x ∈ A ∧ xRy) ∨ (x ∈ B ∧ xSy)

A relation R is bitotal on sets A and B, when for every element in A there exists at
least one element in B to which it is related, and similarly for B.
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Definition A.3.3 Bitotal relation BITOTAL DEF

∀R A B :: bitotal.R.A.B = ∀x y :: ((x ∈ A) ∧ (xRy)) ⇒ (y ∈ B)
∧(∀x :: (x ∈ A) ⇒ (∃y :: (y ∈ B) ∧ xRy))
∧(∀y :: (y ∈ B) ⇒ (∃x :: (x ∈ A) ∧ xRy))

Theorem A.3.4 F2R BITOTAL is SURJECTION

∀f A B :: surjection.f.A.B = bitotal.(f2r.f).A.B

A.4 Lists

In the built-in theory list, a type (’a)list is defined to denote the set of all finite
lists having elements of type ’a. The constructor functions that are used to construct
any list-structured value of type (’a)list are:

[ ] ∈ (’a)list
CONS ∈ ’a→ (’a)list→ (’a)list

Below definitions and theorems are stated. In these definitions, 0 and SUC refer to
the constructor functions that are used to construct any natural number in num.

Theorem A.4.1 list element IS EL

(∀x :: ¬is el.x.[]) ∧ (∀x y l :: is el.y.(CONS.x.l) = (y = x) ∨ is el.y.l)

Definition A.4.2 map MAP

(∀f :: map.f.[] = []) ∧ (∀f x l :: map.f.(CONS.x.l) = CONS.(f x).(map.f.l))

Definition A.4.3 zip ZIP

(zip.([], []) = []) ∧
(∀x1 l1 x2 l2 :: zip.(CONS.x1.l1, CONS.x2.l2) = CONS.(x1, x2).(zip.(l1, l2)))

Definition A.4.4 foldr FOLDR

(∀f e :: foldr.f.e.[] = e) ∧ (∀f e x l :: foldr.f.e.(CONS.x.l) = f.x.(foldr.f.e.l))

Definition A.4.5 length LENGTH

(length.[] = 0) ∧ (∀x l :: length.(CONS.x.l) = (length.l)) + 1

Definition A.4.6 every EVERY

(∀P :: every.P.[] = true) ∧ (∀P h t :: every.P.(CONS.h.t) = P.h ∧ every.P.t)

Definition A.4.7 sum SUM

(sum.[] = 0) ∧ (∀x l :: sum.(CONS.x.l) = x + (sum.l))

Theorem A.4.8 map compostion MAP o

∀f g l :: map.f.(map.g.l) = map.(f ◦ g).l
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Theorem A.4.9 ZIP MAP EQ MAP split

∀f l :: zip.((map.f.l), l) = map.(split.f).l

Theorem A.4.10 IS EL MAP

∀Q f l :: (∀x : is el.x.(map.f.l) : Q.x) = (∀x : is el.x.l : Q.(f.x))

Definition A.4.11 interval

interval.0 = [] ∧ interval.(SUC.n) = CONS.n.(interval.n)

Theorem A.4.12 appending lists APPEND

∀l :: ([] ++ l) = l ∧ ∀l1 l2 x :: ((CONS.x.l1) ++ l2) = (CONS.x.(l1 ++ l2))

Definition A.4.13 deleting an element DEL

(∀y :: del.y.[] = []) ∧
(∀y l x :: del.y.(CONS.x.l) = ((x = y) → l | CONS.x.(del.y.l)))

Definition A.4.14 first element of a list HD

∀x l :: hd.(CONS.x.l) = x

Definition A.4.15 tail of a list TL

∀x l :: tl.(CONS.x.l) = l

Definition A.4.16 indexed elements EL

∀l :: el.0.l = hd.l ∧ ∀n l :: el.(SUC.n).l = el.n.(tl.l)

Definition A.4.17 list contains no duplicate elements NO DUPLICATES

∀l :: no duplicates.l = ∀n k : n < length.l ∧ k < length.l ∧ n 6= k : el.n.l 6= el.k.l

A.5 Sets

Definition A.5.1 characteristic set predicate IN DEF

∀s x :: CHF.s.x = (x ∈ s)

Definition A.5.2 image IMAGE DEF

∀f s :: image.f.s = {f.x | x ∈ s}

Definition A.5.3 insert INSERT DEF

∀x s :: x insert s = {y | (y = x) ∨ y ∈ s}

Definition A.5.4 Complement of a set

∀s :: sc = {x | x 6∈ s}
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Theorem A.5.5 IN IMAGE

∀y s f :: y ∈ image.f.s = (∃x. (y = (f.x)) ∧ x ∈ s)

Theorem A.5.6 IMAGE EQ

∀f g s ::
∀x. (f.x) = (g.x)

image.f.s = image.g.s

The predicate FINITE is true of finite sets and false for infinite ones.

Definition A.5.7 Cardinality of sets set

(card.{} = 0) ∧
∀s :: FINITE.s

⇒
(∀x :: card.(x insert s) = ((x ∈ s) => card.s | card.s + 1))

Definition A.5.8 converting lists to sets L2S DEF

(l2s.[] = {}) ∧
(∀x l :: l2s.(CONS.x.l) = x insert (l2s.l))

Theorem A.5.9 L2S MAP EQ IMAGE

∀f l :: l2s.(map.f.l) = image.f.(l2s.l)

Theorem A.5.10 L2S FINITE

∀l :: FINITE.(l2s.l)

Theorem A.5.11 IN L2S IS EL

∀l x :: (x ∈ (l2s.l)) = (is el.x.l)

A.6 Converting (finite) sets to lists

Because sets are unordered, a function that converts sets to lists cannot be defined
by set-induction on finite sets, like e.g. the definition of function card:

s2l.{} = [] ∧
∀s :: FINITE.s

⇒
(∀x :: s2l.(x insert s) = ((x ∈ s) => s2l.s | CONS.x.(s2l.s)))

Defining s2l this way, reults in that s2l.{2, 3, 4} is not equal to s2l.{4, 3, 2}, and this
is clearly not what we want.

The correct definition of the function s2l has been constructed as follows. First,
we define when a function f : num→α is a bijection from a subset of num to a set
containing elements of type α:
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Definition A.6.1 Bijection from subset of num to a set is BIJ NUM to

f is BIJ NUM to s
= ∀n m : n < card.s ∧ m < card.s : (f.n = f.m) ⇒ n = m

∧ s = {f.n | n < card.s}

Then we define such a bijection for a set s using Hilbert’s choice operator (Section
2.2):

Definition A.6.2 A bijection for a set set BIJ

set BIJ.s = εf. f is BIJ NUM to s

and prove that it indeed is a bijection as defined in definition A.6.1:

Theorem A.6.3 set BIJ DEF

∀s :: FINITE.s ⇒ set BIJ.s is BIJ NUM to s

Now the idea is, to define the function s2l.s by mapping the set bijection set BIJ.s as
defined above on a list containing the elements 0 to card.s.

Definition A.6.4 Converting finite sets to lists S2L L2S

s2l.s = map.(set BIJ.s).(interval.(card.s))

The rest of this section lists some theorems.

Theorem A.6.5 IN IS EL S2L

∀s :: FINITE.s ⇒ ∀x :: (x ∈ s) = (is el.x.(s2l.s))

Theorem A.6.6 L2S S2L id

∀s :: FINITE.s ⇒ (s = l2s.(s2l.s))

Theorem A.6.7 NO DUPLICATES S2L

∀s :: FINITE.s ⇒ no duplicates.(s2l.s)

Theorem A.6.8 IS EL DEL S2L

∀s x y ::
FINITE.s ∧ is el.x.(s2l.s) ∧ is el.y.(del.x.(s2l.s))

x 6= y

Theorem A.6.9 S2L split

∀s x ::
FINITE.s ∧ ¬(x ∈ s)

∃l1 l2 :: (s2l.(x insert s) = (l1 ++ [x] ++ l2)) ∧ (s = l2s.(l1 ++ l2))
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A.7 The iteration operator

Definition A.7.1 iterate iterate

iterate.0.f .x = x
iterate.(SUC.n).f .x = f.(iterate.n.x)

Theorem A.7.2 iterate SUC

∀n f x :: iterate.(SUC.n).f.x = iterate.n.f.(f.x)

Theorem A.7.3 iterate PRE

∀n : n ≥ 1 : ∀f x :: iterate.n.f.x = iterate.(PRE.n).f.(f.x)

where PRE is the predecessor function on natural numbers, characterised as follows:

Theorem A.7.4 PRE

(PRE.0 = 0) ∧ (∀n :: PRE.(SUC.n) = n)

Theorem A.7.5 iterate FP

∀n f x y ::
y = iterate.n.f.x ∧ y = f.y

∀m : m ≥ n : y = iterate.m.f.x

Theorem A.7.6 iterate DISTR UNION

∀X Y f ::
f.(X ∪ Y ) = (f.X) ∪ (f.Y )

∀n :: iterate.n.f.(X ∪ Y ) = iterate.n.f.X ∪ iterate.n.f.Y

Theorem A.7.7 LESS k iterate IMP LESS PRE k iterate SUC

∀k f q r ::
∀m : m < k : iterate.m.f.q 6= r)

∀m : m < PRE.k : iterate.(SUC.m).f.q 6= r

Theorem A.7.8 LESS k iterate SUC IMP LESS SUC iterate

∀k f q r ::
(q 6= r) ∧ (∀m : m < k : iterate.(SUC.m).f.q 6= r)

∀m : m < SUC.k : iterate.m.f.q 6= r

Theorem A.7.9 iterate thm

For transitive and reflexive relations R:

∀P f Q ::

(∀L : L ⊆ P : (f.L) ⊆ P )
(∀L : L ⊆ P : R.(∀x : x ∈ L : Q.x)(∀x : x ∈ (f.L) : Q.x))

∀n L : L ⊆ P : R.(∀x : x ∈ L : Q.x).(∀x : x ∈ (iterate.n.f.L) : Q.x)

Theorem A.7.10 iterate EQ

∀n f g x ::
∀m : m < n : f.(iterate.m.f.x) = g.(iterate.m.f.x)

iterate.n.f.x = iterate.n.g.x

Theorem A.7.11 iterate IN P

∀f P ::
∀p : p ∈ P : (f.p) ∈ P

∀q : q ∈ P : ∀n :: (iterate.n.f.q) ∈ P
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A.8 Labelled trees

In the built-in HOL theory tree, a type tree is defined to denote the set of all ordered
trees of which the nodes can branch any (finite) number of times. A constructor
function

node ∈ (tree)list→ tree

can be used to construct any value of type tree. For example, the tree:

is denoted by the term:
node.[node.[node.[]; node.[]]; node.[]; node.[]]

Figure A.1: Some tree

The size of a tree is defined to be the number of nodes in that tree:

Definition A.8.1 size of trees size

∀tl :: size.(node tl) = sum.(map.size.tl) + 1
J

In the built-in HOL theory ltree a type of labelled trees (called (’a)ltree) is defined
by a type definition, following the way this is described in Section B.1 and [Mel89].
Labelled trees have the same structure as values of the defined type tree. The only
difference is that a labelled tree of type (’a)ltree has a value associated with each
of its nodes. The constructor:

Node ∈ ’a→ ((’a)ltree)list→ (’a)ltree

can be used to construct any value of type (’a)ltree. For example,

4

3 68

2 1
is denoted by the term:

Node.4.[Node.3.[Node.2.[]; Node.1.[]]; Node.6.[];Node.8.[]]

Figure A.2: Some labelled tree

There is a function available that given an labelled tree of type (’a)ltree returns the
shape of the tree:

shape.t ∈ (’a)ltree→ tree
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For example, applying shape to the labelled tree in Figure A.2, returns the tree in
Figure A.1. The function that returns the list of values that are associated with the
nodes of an labelled tree of type (’a)ltree is:

values.t ∈ (’a)ltree→ (’a)list

A pair (t, l) ∈ (tree× (’a)list) for which it holds that the size of t equals the length
of l can be used to create a labelled tree:

Definition A.8.2 Is ltree Is ltree

∀t l :: Is ltree.(t, l) = (lenght.l = size.t)

Theorem A.8.3 can create ltree from shape and values Is ltree REP ltree lemma

∀t :: Is ltree.(shape.t, values.)
J

There is an induction principle on labelled trees:

Theorem A.8.4 ltree Induction ltree Induct

∀P ::
(∀t :: every.P.t ⇒ (∀h :: P.(Node.h.t)))

∀l :: P.l
J

Finally, analoguous to the functions on lists, we have (defined in the theory more ltrees):

Definition A.8.5 map on trees MAP TREE DEF

∀v t :: map tree.f.(Node.v.t) = Node.(f.v).(map.(map tree.f).t)

Definition A.8.6 zip on trees ZIP TREE DEF

For all v1, v2, t1, t2:
length.t1 = length.t2

zip tree.(Node.v1.t1,Node.v2.t2) = Node.(v1, v2).(map.zip tree.(zip.(t1, t2)))

Definition A.8.7 every on trees EVERY TREE DEF

(∀P h t :: every tree.P.(Node.h.t) = P.h ∧ every.(every tree.P ).t
J
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Appendix B

Justification for axiomatising
the abstract characterisation
theorem of Val

In this appendix, we will describe how we manually defined the following not concrete
recursive data type sVal in HOL.

sVal = NUM num
| SET (Val)set
| LIST (Val)list
| TREE (Val)ltree

The contents of this appendix serves as a justification for the axiomatic extension of
HOL with the following recursive data type Val described in Chapter 5.

Val = NUM num
| BOOL bool
| REAL real
| STR string
| SET (Val)set
| LIST (Val)list
| TREE (Val)ltree

Subsection B.1 outlines the general approach one has to follow when manually defining
a recursive data type in HOL. Subsection B.2 and B.3 describe the application of this
approach to the data type sVal. All results in this appendix have been mechanically
verified with HOL.

225
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B.1 The general approach for defining a new type
in HOL

The approach to defining a new logical type as described in [Mel89], involves the
following three steps:

1. find an appropriate non-empty subset of an existing type to represent the new
type

2. extend the syntax of logical types to include a new type symbol, and use a type
definition axiom to relate this new type to its representation

3. derive from the type definition axiom and the properties of the representing
type a set of theorems that serves as an “axiomatisation” of the new type.

In the first step, a model for the new type is given by specifying a set of values that
will be used to represent it. This is done by defining a predicate P on an existing type
such that the set of values satisfying P is non-empty and has exactly the properties
that the new type is expected to have.

In the second step, the syntax of types is extended to include a new type symbol
which denotes the set of values of the new type. In HOL, this can be done by means
of type definition axioms, a mechanism formalised by Mike Gordon in [Gor85] which
defines a new type by adding a definitional axiom to the logic asserting that the new
type is isomorphic to an appropriate non-empty subset of an existing type. The SML
function for doing this in HOL is:

new type definition : {name:string, pred:term, inhab thm:thm} → thm

new
type

P
isomorphism

rep

existing
type

tyP ty

If ty is an existing type of the HOL logic, and P is a term of type ty → bool denoting
a non-empty1 (i.e. we can prove ` ∃x :: P x) subset of ty, then evaluating:

new type definition : {name = " tyP ", pred = P , inhab thm = ` ∃x :: P x }

results in tyP being declared as a new type symbol characterised by the following
definitional axiom:

1Due to the formalisation of Hilbert’s ε-operator, HOL types must be non-empty (see also Section
2.2).
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` ∃rep :: (∀x y :: (rep.x = rep.y) ⇒ x = y)
∧ (∀r :: P.r = (∃x :: r = rep.x)) (tyP TY DEF)

which states that the set of values denoted by the new type is isomorphic to, and
consequently has the same properties as, the subset of ty specified by P . By adding
this definition to the logic, the new type tyP is defined in terms of existing type ty,
and the isomorphism rep can be thought of as a representation function that maps
a value of the new type tyP to the value of type ty that represents it. The type
definition axiom (tyP TY DEF) above, asserts only the existence of a bijection from
tyP to the corresponding subset of ty. To introduce constants that in fact denote this
isomorphism and its inverse, the following SML function is provided:

define new type bijections :
{ABS:string, REP:string, name:string, tyax:thm} → thm

If REP tyP and ABS tyP are the desired names under which to store the representation
function and its inverse, then evaluating:

define new type bijections
{ABS = "ABS tyP ", REP = "REP tyP ",
name = "tyP ISO DEF", tyax = tyP TY DEF}

defines two constants REP tyP :ty → tyP and ABS tyP :tyP → ty, and creates the
following theorem which is stored under the name tyP ISO DEF:

` (∀a :: ABS tyP .(REP tyP .a) = a)
∧ (∀r :: P.r = (REP tyP .(ABS tyP .r) = r)) tyP ISO DEF

It is straightforward to prove that the representation and abstraction functions are
injective (one-to-one) and surjective (onto), using provided SML functions:

` (∀a a′ :: (REP tyP .a = REP tyP .a′) = (a = a′)) tyP REP ONE ONE
` ∀r :: P.r = (∃a :: r = REP tyP .a) tyP REP ONTO
` ∀r r′ :: P.r ⇒ P.r′ ⇒ ((ABS tyP .r = ABS tyP .r′) = (r = r′)) tyP ABS ONE ONE
` ∀a :: ∃r :: (a = ABS tyP .r) ∧ P.r tyP ABS ONTO

So, after the second step we actually have the new type tyP , we know that the values
of this type have exactly the same properties as the values in the subset P of ty, and
we have a representation and abstraction function to go back and forth between tyP

and ty. Consequently, stating that some property H is true for all elements of the
new type tyP is equal to stating that for all elements in P , H is true of their image
under ABS tyP :

` (∀x :: (H.x)) = (∀r :: (P.r) ⇒ (H.(ABS tyP .r))) tyP PROP

In the third step, a collection of theorems is proved that state abstract character-
isations of the new type. These characterisations capture the essential properties of
the new type without reference to the way its values are represented and therefore



228 Appendix B Justification

acts as an abstract “axiomatisation” of it. For an inductive type σ, the assertion of
the unique existence of a function g satisfying a recursion equation whose form coin-
cides with the primitive recursion scheme of this type σ – that is, g is a paramorphism
[Mee90] – provides an adequate and complete abstract characterisation for σ. From
this characterisation it follows that every value of σ is constructed by one or more
applications of σ’s constructors, and consequently completely determines the values
of σ up to isomorphism without reference to the way these are represented. Moreover,
in [Mee90] it is proved that all functions with source type σ are expressible in the
form of paramorphism g.

B.2 The representation and type definition

In [Mel89] a concrete recursive type of the form:

op = C1 t11 . . . tk1
1

| . . .
| Cm tm1 . . . tkm

1

(B.2.1)

is represented by a non-empty subset of labelled trees (see Appendix A for labelled
trees (())ltree). Each of the m constructors Ci, 1 ≤ i ≤ m, of the concrete recursive
data type is represented by a labelled tree using the scheme outlined below:

Let us consider the following instantiation of the ith constructor: Ci.x1
i . . . xki

i ,
where each xj

i is of type tji which can be an existing logical type, or is the type op
itself. Let pi denote the number of arguments which have existing types and let qi be
the number of arguments which have type op, where pi + qi = ki, then the abstract
value of op denoted by Ci.x1

i . . . xki
i can be represented by a labelled tree which has

pi values associated with its root node, and qi subtrees (for the recursive occurences
of op). In a diagram:

Ci.
︷ ︸︸ ︷

xi
1 . . . xki

i
︸ ︷︷ ︸

︸ ︷︷ ︸

qi subtrees

pi labels
︷ ︸︸ ︷

( , , . . . , )
pi arguments having
existing logical types

qi arguments
of type op

the root of the representing tree is labelled by a pi-tuple of values. Each of these
values is one of the pi arguments to Ci which are not of type op. When pi = 0, the
representing tree is labelled with one, the one and only element of type one. The qi

subtrees shown in the diagram are the representations of the arguments of Ci that
have type op. When qi = 0, the tree will have no subtrees. Each of the m constructors
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can be represented by a labelled tree in this way, and consequently the representing
type for op will be:

(

sum of m products
︷ ︸︸ ︷

( ( # . . . # )
︸ ︷︷ ︸

product of p1 types

+ . . . + ( # . . . # )
︸ ︷︷ ︸

product of pm types

))ltree

The subset predicate P can now be defined to specify a subset of labelled subtrees of
the above type.

This method from [Mel89] only has to be adjusted a bit, in order to represent a
subset of the new data type sVal. Let us be ignorant of the sets for a while, and start
using the ideas outlined above. That is, we use ((one + num + one + tree))ltree as
the representing type, and make representations for the constructors NUM, LIST and
TREE as follows:

NUM.n Node.(INR.(INL.n)).[]

LIST.[x1, . . . , xn] Node.(INR.(INR.(INL.one))).[rx1 , . . . , rxn ]

rx1 rxn

TREE.t Node.(INR.(INR.(INR.ts))).[rv1 , . . . , rvm ]

rv1 rvm

where, rx denotes the representation as a ((one + num + one + tree))ltree of value x
of type sVal. The ts in the root of the representation tree of TREE t denotes the shape
of the tree t (i.e. FST.(REP ltree.t)), and [v1, . . . , vm] is the list of sVal typed values
stored at the nodes of tree t, (i.e. SND.(REP ltree.t)). Although ts is not an argument
to the constructor TREE we can use this position at the root of the representation
tree to store the shape of the sVal tree which we obviously need in order to be able
to go from the representation as a ((one + num + one + tree))ltree – where all the
values of the sVal tree are put in a list not containing any information about the
shape of the original tree – to an abstract value of type sVal.
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As already indicated, the sets in the new type sVal constitue a problem when
proceeding with the method outlined above. When representing SET.{x1, . . . , xn} as
a labelled ltree of which the subtrees are the representations of the values x1,. . . ,xn

the resulting representation function is not an injection, since:

SET.{x1, x2} = SET.{x2, x1}

but,

v

rx1 rx2

6=
v

rx2 rx1

The solution is to represent SET.{x1, . . . , xn} by an equivalence class of ltrees in which
ltrees like the two above are considered to be equivalent. Consequently, the existing
type to represent our new type sVal by shall consist of equivalence classes of ltrees,
that is:

((one + num + one + tree))ltree → bool

Before the subset predicate can be defined, we first need to formalise the equivalence
relation equiv, that given an ltree of type ((one + num + one + tree))ltree, returns
the equivalence class of that ltree:

equiv : ((one + num + one + tree))ltree →
((one + num + one + tree))ltree → bool

The representation of a:

NUM.n value obviously has to consist of the equivalence class containing only the
ltree (Node.(INR.(INL.n)).[]). Consequently, equiv.(Node.(INR.(INL.n)).[]) must
return a function that only delivers true for argument (Node.(INR.(INL.n)).[]).

SET.{x1, . . . , xn} value, has to consist of the class containing all ltrees that are equiv-
alent to:

Node.(INL.one).[rx1 , . . . , rxn ]

rx1 rxn

For the SET case this must be the class of ltrees:
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• that have (INL.one) at their root
• of which the sets of images of their subtrees under equivalence are identical.

Note that, because of the absence of ordering in sets, the requirement that
these particular sets are identical ensures that two ltrees as displayed on
page 230 are equivalent.

Consequently, equiv.(Node.(INL.one).tl1) must return a function that only de-
livers true when given an argument (Node.(INL.one).tl2) such that:

image.equiv.(l2s.tl1) = image.equiv.(l2s.tl2)

LIST.xs value, has to consist of the class containing all ltrees that are equivalent to:

Node.(INR.(INR.(INL.one))).[rx1 , . . . , rxn ]

rx1 rxn

For the LIST case this must be the class of ltrees:
• have (INR.(INR.(INL.one))) at their root
• of which the list of images of their subtrees under equivalence are identical.

Consequently, equiv.(Node.(INR.(INR.(INL.one))).tl1) must return a function that
only delivers true for an argument (Node.(INR.(INR.(INL.one))).tl2) such that:

map.equiv.tl1 = map.equiv.tl2

TREE.t value, has to consist of the class containing all ltrees that are equivalent to:

Node.(INR.(INR.(INR.ts))).[rv1 , . . . , rvm ]

rv1 rvm

Where ts denotes the shape of tree t, and [v1, . . . , vm] is the list of sVal typed
values stored at the nodes of tree t. For the TREE case this must be the class
of ltrees:
• have (INR.(INR.(INR.ts))) at their root
• of which the list of images of their subtrees under equivalence are identical.

Consequently, equiv.(Node.(INR.(INR.(INR.ts))).tl1), must return a function that
only delivers true for an argument (Node.(INR.(INR.(INR.ts))).tl2) such that:

map.equiv.tl1 = map.equiv.tl2
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Below the formal definition of equiv is given:

Definition B.2.1 Equivalence relation equiv DEF

equiv.(Node.v1.tl1).(Node.v2.tl2) =

(v1 = v2)
∧

((tl1 = tl2 ∧ (∃n :: v1 = INR.(INL.n)))
∨
(image.equiv.(l2s.tl1) = image.equiv.(l2s.tl2) ∧ ISL.v1)
∨
(map.equiv.tl1 = map.equiv.tl2)
∧

(v1 = INR.(INR.(INL.one)) ∨ ∃t :: v1 = INR.(INR.(INR.t))))

J

Proving that the relation equiv is an equivalence relation is tedious but straightfor-
ward. Using the very nice way to represent equivalence relations from [Har93b], we
have:

Theorem B.2.2 equiv is an equivalence relation equiv EQUIV REL

equiv.t1.t2 = (equiv.t1 = equiv.t2)
J

The subset predicate P that has to specify a non-empty subset of equivalence classes
of ltrees can now be defined as the quotient set of an appropriate subset Q of ltrees
by the equivalence relation equiv. Looking at the representations of the different sVal
values, we can see that this Q must contain ltrees (Node.v.tl) for which hold that:

(1) if (v = INR.(INL.n)) for some number n at their root , then tl = [].
(2) if (v = INR.(INR.(INR.t))) for some tree t, then t and tl form an ltree
(3) for all ltrees in tl, (1) and (2) from above also hold.

in a formula:

Definition B.2.3 Q DEF

Q.(Node.v.tl) =
(∃n :: (v = INR.(INL.n))) ⇒ tl = []

∧ (∃t :: v = INR.(INR.(INR.t))) ⇒ Is ltree.(OUTR.(OUTR.(OUTR.v)), tl)
∧ (∀t :: t ∈ tl ⇒ Q.t)

J

Finally, the subset predicate P is defined as the quotient set of Q by equiv:
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Definition B.2.4 Is pvt REP

P = Q/equiv

Theorem B.2.5 Is pvt REP THM

P = (λs. ∃t :: (s = equiv.t) ∧ (Q.t))
J

It is easy to prove that P is not empty, and consequently we can use SML func-
tions new type definition and define new type bijections to extend the syntax
of logical types to include our new type sVal, define the type bijections ABS sVal
and REP sVal between sVal and P , and prove that these are injective and surjective:

Definition B.2.6 sVal ISO DEF

(∀a :: ABS sVal.(REP sVal.a) = a) ∧ (∀r :: P.r = (REP sVal.(ABS sVal.r) = r))

Theorem B.2.7 sVal REP ONE ONE

(∀a a′ :: (REP sVal.a = REP sVal.a′) = (a = a′))

Theorem B.2.8 sVal REP ONTO
∀r :: P.r = (∃a :: r = REP sVal.a)

Theorem B.2.9 sVal ABS ONE ONE
∀r r′ :: P.r ⇒ P.r′ ⇒ ((ABS sVal.r = ABS sVal.r′) = (r = r′))

Theorem B.2.10 sVal ABS ONTO

∀a :: ∃r :: (a = ABS sVal.r) ∧ P.r

Theorem B.2.11 sVal PROP

(∀x :: (H.x)) = (∀r :: (P.r) ⇒ (H.(ABS sVal.r)))
J

B.3 The axiomatisation

The abstract axiomatisation of sVal will be based upon four constructors:

NUM : num → sVal
SET : (sVal)set → sVal
LIST : (sVal)list → sVal
TREE : (sVal)ltree → sVal

To define the constructors, we need a function that given an equivalence class of ltrees
returns an element of that equivalence class. We will call this function pick, and define
it using Hilbert’s ε-operator (see Section 2.2). It satisfies the following properties:
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Definition B.3.1 pick pick

pick.c = εt. c.t

Theorem B.3.2 equiv pick REP pvt

equiv ◦ pick ◦ REP sVal = REP sVal

Theorem B.3.3 Q pick REP pvt

∀x :: Q.((pick ◦ REP sVal).x)
J

Now the constructors can be defined as follows (see Appendix A for the definition of
s2l).

Definition B.3.4 NUM DEF

NUM.n = ABS sVal.(equiv.(Node.(INR.(INL.n)).[]))

Definition B.3.5 SET DEF

SET.s = ABS sVal.(equiv.(Node.(INL.one).(map.(pick ◦ REP sVal).(s2l.s))))

Definition B.3.6 LIST DEF

LIST.l = ABS sVal.(equiv.(Node.(INR.(INR.(INL.one))).(map.(pick ◦ REP sVal).l)))

Definition B.3.7 TREE DEF

TREE.t = ABS sVal.(equiv.(Node.(INR.(INR.(INR.(shape.t)))))
.(map.(pick ◦ REP sVal).(values.t)))

J

Having defined the constructors, the theorem which abstractly characterises the new
type sVal, by stating the unique existence of a paramorphism para has to be proved.

Theorem B.3.8 Abstract characterisation of sVal pvt Axiom

∀fn fs fl ft ::
∃!para ::

(∀n :: para.(NUM.n) = fn.n)
∧
(∀s :: (FINITE.s) ⇒ (para.(SET.s) = fs.(image.(split.para).s)))
∧
(∀l :: para.(LIST.l) = fl.(map.(split.para).l))
∧
(∀t :: para.(TREE.t) = ft.(map tree.(split.para).t))

J

The proof of Theorem B.3.8 consists of two parts, the proof of the existence of a
paramorphism para, and the proof that such a paramorphism is unique.

The existence proof is based upon the following theorem about quotient sets.
Informally, this theorem states that: for all equivalence relations E on α, and subsets



B.3 The axiomatisation 235

Q on α, if ABS and REP are mutually inverse bijections between some set β and
Q/equiv, and h is a function of type α → γ that does not disthinguish between
different elements in the same equivalence class, then there exists a unique function
g of type β → γ such that the following diagram commutes:

Q E Q/E

ABS

β

REP

g
γ

h

Theorem B.3.9 quotient sets QUOTIENT THM

For all equivalence relations E on α; for all Q defining a subset of α; for all ABS : (α
→ bool) → β and REP : β → (α → bool), abstraction and representation functions
respectively, the following theorem holds for all functions h of type α → γ:

(∀a :: ABS.(REP.a) = a) ∧ (∀r :: ((Q/E).r) = (REP.(ABS.r) = r))
(∀t1 t2 :: (E.t1.t2) ⇒ (h.t1 = h.t2))

∃!g :: ∀t :: (Q.t) ⇒ (g.(ABS.(E.t)) = (h.t))
J

Instantiating Theorem B.3.9 with ((one+num+one+tree))ltree for α, equiv for E,
ABS sVal for ABS, REP sVal for REP, and Q, obviously makes g a good candidate
for para. Applying modus ponens to this instantiation and sVal ISO DEF gives us a
unique function g of type sVal → γ for which it holds that:

∀t1 t2 :: (equiv.t1.t2) ⇒ (h.t1 = h.t2)
∀t :: (Q.t) ⇒ (g.(ABS sVal.(equiv.t)) = (h.t))

(B.3.1)

Using theorem B.3.3 (and Theorem A.8.3), it is easy to prove that:

Theorem B.3.10 Q NUM REP

∀n :: Q (Node.(INR.(INL.n)).[])

Theorem B.3.11 Q SET REP

∀s :: Q.(Node.(INL.one).(map.(pick ◦ REP sVal).(s2l.s)))

Theorem B.3.12 Q LIST REP

∀l :: Q.(Node.(INR.(INR.(INL.one))).(map.(pick ◦ REP sVal).l))

Theorem B.3.13 Q TREE REP

∀t :: Q.(Node.(INR.(INR.(INR.(shape.t)))).(map.(pick ◦ REP sVal).(values.t)))
J
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These theorems together with (B.3.1) and the definitions of the constructors give us:

∀t1 t2 :: (equiv.t1.t2) ⇒ (h.t1 = h.t2)
∀n :: g.(NUM.n) = h.(Node.(INR.(INL.n)).[])
∀s :: g.(SET.s) = h.(Node.(INL.one).(map.(pick ◦ REP sVal).(s2l.s)))
∀l :: g.(LIST.l) = h.(Node.(INR.(INR.(INL.one))).(map.(pick ◦ REP sVal).l))
∀t :: g.(TREE.t) = h. (Node.(INR.(INR.(INR.(shape.t))))

.(map.(pick ◦ REP sVal).(values.t)))

Consequently, in order to finish the existence part of the proof of Theorem B.3.8, we
have to find a function h, that satisfies the following properties:

(i). ∀t1 t2 :: (equiv.t1.t2) ⇒ (h.t1 = h.t2)
(ii). h.(Node.(INR.(INL.n)).[])

= fn.n
(iii). h.(Node.(INL.one).(map.(pick ◦ REP sVal).(s2l.s)))

= fs.(image.(split.g).s), for all finite sets s
(iv). h.(Node.(INR.(INR.(INL.one))).(map.(pick ◦ REP sVal).l))

= fl.(map.(split.para).l)
(v). h.(Node.(INR.(INR.(INR.(shape.t)))).(map.(pick ◦ REP sVal).(values.t)))

= ft.(map tree.(split.para).t)

We claim that the following function, defined by “primitive recursion” on ltrees, sat-
isfies these conditions, and to finish the proof of the existence part of theorem B.3.8,
it only remains for us to validate this claim:

∀v tl :: h.(Node.v.tl) = k.(map.h.tl).v.tl, where:
k = λxs v tl.

ISL.v → fs.(l2s.(zip.(xs, (map.(ABS sVal ◦ equiv).tl))))
| ISL.(OUTR.v) => fn.(OUTL.(OUTR.v))
| ISL.(OUTR.(OUTR.v)) => fl.(zip.(xs, (map.(ABS sVal ◦ equiv).tl)))
| ft.(zip tree

((ABS ltree.(OUTR.(OUTR.(OUTR.v)), xs)),
(ABS ltree.(OUTR.(OUTR.(OUTR.v)), map.(ABS sVal ◦ equiv).tl))))

In order to prove requirement (i), we have the following theorem, the proof of which
is straightforward and tedious and hence will not be given here.
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Theorem B.3.14 ltree Axiom PRESERVES equiv

For all functions h of type ((one + num + one + tree))ltree → γ defined by
“primitive recursion” on ((one + num + one + tree))ltrees (i.e. having the form
(∀v tl :: h.(Node.v.tl) = k.(map.h.tl).v.tl) for an arbitrary function k of type (γ)list
→ ((one + num + one + tree))list → γ):

∀xs1 xs2 tl1 tl2 v ::
(equiv.(Node.v.tl1).(Node.v.tl2) ∧
(ISL.v) ⇒ (length.xs1 = length.tl1) ∧ (length.xs2 = length.tl2) ∧

((l2s.(zip.(xs1,map.equiv.tl1))) = (l2s.(zip.(xs2, map.equiv.tl2)))
(ISR.v) ⇒ (xs1 = xs2))
⇒
((k.xs1.v.tl1) = (k.xs2.v.tl2))

∀t1 t2 :: (equiv.t1.t2) ⇒ (h.t1 = h.t2)

J
Proving that our function k satisfies the premise of theorem B.3.14 is again straight-
forward and tedious since, as the proof of theorem B.3.14 itself, it involves lots of
lemmas involving ZIP. We shall not give this proof here either, and consider (i) to be
proven.

It is easy to prove that h satisfies property (ii):

h.(Node.(INR.(INL.n)).[])
= (definition h and k)

fn.(OUTL.(OUTR.(INR.(INL.n))))
= (OUTL, OUTR, INR, INL)

fn.n

In order to show that h satisfies property (iii), we first need to prove:

∀s :: map.(h ◦ pick ◦ REP sVal).(s2l.s) = map.g.(s2l.s) (B.3.2)

proof of B.3.2
Let us consider an arbitrary set s of sVal-typed values. Since h ◦ pick ◦ REP sVal is
mapped only on elements in (s2l s), it will be sufficient to prove:

∀t : t ∈ (s2l s) : g = (h ◦ pick ◦ REP sVal)
From the definition of Q (B.2.3) and theorem B.3.11, we know that:

∀x : x ∈ (map.(pick ◦ REP sVal).(s2l.s)) : (Q.x) holds,
and thus (Theorem A.4.10)

∀t : t ∈ (s2l.s) : (Q.((pick ◦ REP sVal).t))
From (i) and (B.3.1) we can now deduce that

∀t : t ∈ (s2l.s) : (g ◦ ABS sVal ◦ equiv ◦pick◦ REP sVal) = (h ◦ pick◦ REP sVal)
which with theorem B.3.2 and sVal ISO DEF, rewrites to:

∀t : t ∈ (s2l.s) : g = (h ◦ pick ◦ REP sVal)
end proof of B.3.2
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Now we can proceed with the proof of property (iii) as follows:

h.(Node.(INL.one).(map.(pick ◦ REP sVal).(s2l.s)))
= (definition h)

k.(map.h.(map.(pick ◦ REP sVal).(s2l.s))).(INL.one).(map.(pick ◦ REP sVal).(s2l.s))
= (map composition (Theorem A.4.8) and B.3.2)

k.(map.g.(s2l.s)).(INL.one).(map.(pick ◦ REP sVal).(s2l.s))
= (definition k)

fs.(l2s.(zip.(map.g.(s2l.s), map.(ABS sVal ◦ equiv).(map.(pick ◦ REP sVal).(s2l.s)))))
= (map composition (Theorem A.4.8), theorem B.3.2 and sVal ISO DEF)

fs.(l2s.(zip.(map.g.(s2l.s), (s2l.s))))
= (zip and split (Theorem A.4.9))

fs.(l2s.(map.(split.g).(s2l.s)))
= (l2s, map and image (Theorem A.5.9))

fs.(image.(split.g).(l2s.(s2l.s)))
= (s is a finite set (Theorem A.6.6))

fs.(image.(split.g).s)

The proofs of properties (iv) and (v) are similar to the proof of (iii) and will not be
given. We hereby finish the proof of the existence part of theorem B.3.8, and continue
with the proof that the existing paramorphism is unique. That is we shall prove that:
for all function x and y of type sVal → γ:

∀n :: x.(NUM.n) = fn.n
∀s :: finite.s ⇒ (x.(SET.s) = fs.(image.(split.x).s))
∀l :: x.(LIST.l) = fl.(map.(split.x).l)
∀t :: x.(TREE.t) = ft.(map tree.(split.x).t)
∀n :: y.(NUM.n) = fn.n
∀s :: finite.s ⇒ (y.(SET.s) = fs.(image.(split.y).s))
∀l :: y.(LIST.l) = fl.(map.(split.y).l)
∀t :: y.(TREE.t) = ft.(map tree.(split.y).t)

(x = y)
(B.3.3)

In order to be able to prove this, we first need an induction theorem for type sVal.

Theorem B.3.15 Induction on sVal pvt Induct

For all properties H,

∀n :: H.(NUM.n)
∀s :: ((finite.s) ∧ (∀p :: (p ∈ s) ⇒ (H.p))) ⇒ (H.(SET.s))
∀l :: (every.H.l) ⇒ (H.(LIST.l))
∀t :: (every tree.H.t) ⇒ (H.(TREE.t))

∀p :: H.p
J
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The proof of this induction theorem is not too hard. Here we shall only give a sketchy
proof to give the reader an idea. We start with the following lemma, that is easy to
prove using sVal PROP.

Lemma B.3.16 induct lemma4

(∀p :: H.p) = (∀t r :: ((r = equiv.t) ∧ (Q.t)) ⇒ (H ◦ ABS sVal ◦ equiv).t)
J

To prove theorem B.3.15 we assume:

A1) ∀n :: H.(NUM.n)
A2) ∀s :: ((finite.s) ∧ (∀p :: (p ∈ s) ⇒ (H.p))) ⇒ (H.(SET.s)))
A3) ∀l :: (every.H.l) ⇒ (H.(LIST.l))
A4) ∀t :: (every tree.H.t) ⇒ (H.(TREE.t))

we have to prove that:

(∀p :: H.p)
(= lemma B.3.16)

(∀t r :: ((r = equiv.t) ∧ (Q.t)) ⇒ (H ◦ ABS sVal ◦ equiv).t)
(⇐ ltree induction (Theorem A.8.4) and definition of every (Definition A.4.6))

for arbitrary h and tl, we have to prove:

((r = equiv.(Node.h.tl)) ∧ (Q.(Node.h.tl)))
∀t :: (t ∈ tl) ⇒ ∀r :: ((r = equiv.t) ∧ (Q.t)) ⇒ ((H ◦ ABS sVal ◦ equiv).t)

((H ◦ ABS sVal ◦ equiv).(Node.h.tl))

Moving the antecedents of this proof obligation into the assumptions, we get for an
arbitrary h and tl that:

A5) ∀t :: (t ∈ tl) ⇒ (∀r :: ((r = equiv.t) ∧ (Q.t)) ⇒ ((H ◦ ABS sVal ◦ equiv).t))
A6) r = equiv.(Node.h.tl)
A7) Q.(Node.h.tl)

The proof that (H ◦ ABS sVal ◦ equiv).(Node.h.tl), now proceeds by case distinction
on h. We shall prove the SET case (i.e. ISL.h), the other cases are similar. So suppose:

A8) ISL.h

From the definition of equiv, and the properties of Q, pick, ABS sVal and REP sVal
it follows that:
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Lemma B.3.17 SET L2S EQ ABS

For all lists tl of ((one + num + one + tree))ltrees:
∀t :: (t ∈ tl) ⇒ (Q.t)

(SET.(l2s.(map.(ABS sVal ◦ equiv).tl))) = (ABS sVal.(equiv.(Node.(INL.one).tl)))
J

Continuing with the proof of B.3.15:

(H ◦ ABS sVal ◦ equiv).(Node.h.tl)
= (A8, the type of h, one, and ◦)

H.(ABS sVal.(equiv.(Node.(INL.one).tl)))
= (rewriting assumption A7 with Q, and lemma B.3.17)

H.(SET.(l2s.(map.(ABS sVal ◦ equiv).tl)))
⇐ (assumption A2)

finite.(l2s.(map.(ABS sVal ◦ equiv).tl))
∧
∀p :: (p ∈ (l2s.(map.(ABS sVal ◦ equiv).tl))) ⇒ (H.p)

= (lists are finite (Theorem A.5.10))
∀p :: (p ∈ (l2s.(map.(ABS sVal ◦ equiv).tl))) ⇒ (H.p)

= (element of l2s and map (Theorems A.5.9, A.5.5 and A.5.11))
∀p :: (∃t :: (t ∈ tl) ∧ (((ABS sVal ◦ equiv).t) = p)) ⇒ (H.p)

Making the antecedents of this proof obligation into assumptions, gives us an t, such
that for arbitrary p:

A9) t ∈ tl
A10) p = ((ABS sVal ◦ equiv).t)

leaving us with proof obligation:

H.p
= (assumption A10)

H.((ABS sVal ◦ equiv).t)
⇐ (Modus ponens assumption A9 and the Induction Hypothesis (A5))

∃r :: (r = equiv.t) ∧ (Q.t)
= (rewriting assumption A7 with Q, and assumption A9)

∃r :: (r = equiv.t)

Instantiating with equiv t proves this case. As already indicated the other cases
(where ISR h) are similar, the NUM case is trivial, and for the LIST and TREE cases,
theorems similar to B.3.17 had to be proved (see Appendix 8.10.3, LIST EQ ABS and
TREE EQ ABS respectively).

Now that an induction theorem on sVal is available, it is straightforward to prove
the uniqueness. Assume the premises of proof obligation (B.3.3). We have to prove:
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x = y
= (function equality)

∀p :: (x.p) = (y.p)
⇐ (sVal Induction, H = (λp. (x.p) = (y.p)))

∀n :: (x.(NUM.n)) = (y.(NUM.n))
∧
∀s :: ((finite.s) ∧ (∀p :: (p ∈ s) ⇒ ((x.p) = (y.p))) ⇒ ((x.(SET.s)) = (y.(SET.s))))
∧
∀l :: (every.(λp. (x.p) = (y.p)).l) ⇒ ((x.(LIST.l)) = (y.(LIST.l)))
∧
∀t :: (every tree.(λp. (x.p) = (y.p)).t) ⇒ ((x.(TREE.t)) = (y.(TREE.t)))

The first conjunct immediately follows from the premises of (B.3.3). We shall con-
tinue to prove the SET case, the LIST and TREE cases are similar. Suppose, for an
arbitrary set s with sVal typed values:

A’1) finite.s
A’2) ∀p :: (p ∈ s) ⇒ ((x.p) = (y.p))

we have to prove that: (x.(SET.s)) = (y.(SET.s)). From the premises of (B.3.3), we
can deduce that:

A’3) (x.(SET.s)) = fs.(image.(split.x).s)
A’4) (y.(SET.s)) = fs.(image.(split.y).s)

(x.(SET.s)) = (y.(SET.s))
= (assumptions A’3 and A’4)

fs.(image.(split.x).s) = fs.(image.(split.y).s)
⇐

(image.(split.x).s) = (image.(split.y).s)
⇐ (Theorem A.5.6)

∀p :: (p ∈ s) ⇒ ((split.x.p) = (split.y.p))
= (definition split)

∀p :: (p ∈ s) ⇒ (((x.p), p) = ((y.p), p))
= (pairs)

∀p :: (p ∈ s) ⇒ (x.p) = (y.p)

Assumption A’2 proves this SET case, and, as indicated, the LIST and TREE cases
are similar. This completes the outline of the uniqueness part, and consequently the
entire proof, of the abstract characterisation theorem of sVal (Theorem B.3.8).

B.4 Defining the recursive data type Val

It is not difficult to see that manually adding the recursive data type Val to HOL
can be done analoguos to the way sVal is added. The representation, abstract char-
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acterisation and proof obligations for the additional constructors BOOL, REAL and
STRING, will be analogous to those of NUM. However, as the number of construc-
tors increase, so does the number of INRs and INLs, and consequently the proofs will
become long and tedious. Since all formal proofs necessary to prove the abstract char-
acterisation theorem of the subtype sVal have been verified in HOL, we are convinced
that the abstract characterisation theorem of Val can also be proved. Consequently,
we add the abstract characterisation theorem of data type Val as an axiom, using the
following approach.

First, we define a new constant representing our equivalence relation:

val plus = ty_antiq (==‘:one + num + bool + real + string + one + tree‘==);

new_constant {Name="equiv", Ty = ==‘:(^plus)ltree -> (^plus)ltree -> bool‘==};

Then, we define the subset predicate P ′ analogous to the way the subset predicate P
is defined for sVal:

Definition B.4.1 Q t DEF

Q′.(Node.v.tl) =
(∃n :: (v = INR.(INL.n))) ⇒ tl = []
(∃b :: (v = INR.(INR.(INL.b)))) ⇒ tl = []
(∃r :: (v = INR.(INR.(INR.(INL.r))))) ⇒ tl = []
(∃str :: (v = INR.(INR.(INR.(INR.(INL.str)))))) ⇒ tl = []

∧ (∃t :: v = INR.(INR.(INR.(INR.(INR.(INR.t))))))
⇒ Is ltree.(OUTR.(OUTR.(OUTR.(OUTR.(OUTR.(OUTR.v))))), tl)

∧ (∀t :: t ∈ tl ⇒ Q′.t)

Definition B.4.2 Is pvt REP

P ′ = Q′/equiv
J

Again, it is not difficult to prove that P ′ is not empty, and consequently we can use
new type definition to extend the syntax of logical types to include our new type
Val. Subsequently, we define the constructor functions as constants of the desired
types:

new_constant {Name="NUM", Ty = ==‘:num -> Val‘==};
new_constant {Name="BOOL", Ty = ==‘:bool -> Val‘==};
new_constant {Name="REAL", Ty = ==‘:real -> Val‘==};
new_constant {Name="STR", Ty = ==‘:string -> Val‘==};
new_constant {Name="SET", Ty = ==‘:(Val)set -> Val‘==};
new_constant {Name="LIST", Ty = ==‘:(Val)list -> Val‘==};
new_constant {Name="TREE", Ty = ==‘:(Val)ltree -> Val‘==};

Finally, we add the abstract characterisation theorem of data type Val as an axiom
using SML function new open axiom.
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Proofs of the refinement
theorems

This appendix presents detailed proofs of the Theorems 7.2.11112 and 7.2.7113 stating
the conditions under which unless and � properties are preserved under refinement.
The other theorems in Chapter 7 are corollaries of these two theorems.

C.1 Preservation of unless

Theorem 7.2.11 P ref AND SUPERPOSE WRITE PRESERVES UNLESSe

P vR,J Q ∧ Unity.P ∧ Unity.Q ∧ ( Q`�JQ) ∧ (JQ ⇒ J)
∃W :: (wQ = wP ∪W ) ∧ (p C W c) ∧ (q C W c)

P` p unless q ⇒ Q` (JQ ∧ p) unless q
J

proof of 7.2.11

Assume the following:

A1: P vR,J Q
A2: Unity.P ∧ Unity.Q
A3: ( Q`�JQ) ∧ (JQ ⇒ J)
A4: wQ = wP ∪W
A5: (p C W c) ∧ (q C W c)
A6: P` p unless q

From A5 and the definition of confinement (3.3.1728) we can infer:

243
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A7: ∀t, t′ : (t�W c = t′ �W c) ⇒ (p.t = p.t′ ∧ q.t = q.t′)

From A6, the definitions of unless (4.4.143), and the definition of Hoare triples
(3.5.138) we can infer:

A8: ∀AP : AP ∈ aP :
∀s, t : compile.AP .s.t ∧ evalb.(p.s) ∧ ¬(evalb.(q.s)) ⇒ evalb.(p.t) ∨ evalb.(q.t)

Now we have to prove the following:

Q` (JQ ∧ p) unless q

= (Definitions of unless (4.4.143) and Hoare triples (3.5.138))

∀AQ ∈ aQ : ∀s, t :
compile.AQ.s.t ∧ evalb.(JQ.s) ∧ evalb.(p.s) ∧ ¬(evalb.(q.s))
⇒
(evalb.(JQ.t) ∧ evalb.(p.t)) ∨ evalb.(q.t)

Choose an arbitrary AQ, and assume for arbitrary states s and t that:

A9: AQ ∈ aQ
A10: compile.AQ.s.t
A11: evalb.(JQ.s) ∧ evalb.(p.s) ∧ ¬(evalb.(q.s))

Now we have to prove that (evalb.(JQ.t)∧evalb.(p.t))∨evalb.(q.t). From A3, we know
that Q`�JQ, and consequently, using assumptions A9, A10, A11 and the definition
of � (4.4.744 and 4.4.143) we can conclude that evalb.(JQ.t). Thus, we are left with
the following proof obligation:

evalb.(p.t) ∨ evalb.(q.t)

Case ¬(guard of.AQ.s)
In this case A10 implies s = t, and thus assumption A10 establishes the validity of
evalb.(p.t) ∨ evalb.(q.t).

�(¬(guard of.AQ.s))

Case guard of.AQ.s
A12: guard of.AQ.s

From A1 it follows that:
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A13: aQ = aQ1 ∪ aQ2

A14: bitotal.R.aP.aQ1

A15: ∀AQ : AQ ∈ aQ2 : skip vwP,J AQ

Case AQ ∈ aQ1

A16: AQ ∈ aQ1

From A14 we can conclude that there exists an action AP , such that:

A17: AP ∈ aP
A18: AP R AP

A19: AP vwP,J AQ

From A17 and the always-enabledness of actions in the universe ACTION (3.4.1934)
we know that there exists a state t′ such that

A20: compile.AP .s.t′

and consequently from A19, A20, the definition of action refinement (7.2.1109), and
A10, A11, A12 and A3 we can infer that:

A21: t�wP = t′ �wP

Moreover, using A2, A10, A20, and the definition of a well-formed UNITY program
(4.3.143), and the definition of ignored variables (3.4.2236) we can conclude:

A22: s�wP c = t′ �wP c

A23: s�wQc = t�wQc

From A23 we can derive the following:

s�wQc = t�wQc

= (A4)
s�(wP ∪W )c = t�(wP ∪W )c

= (complement of set union, and projection composition (2.8.518))
s�wP c �W c = t�wP c �W c

= (A22)
t′ �wP c �W c = t�wP c �W c

⇒ (definition of projection (2.8.118))
∀x : x ∈ W c : (t′ �wP c).x = (t�wP c).x

This together with A20 establishes t�W c = t′ �W c, which with A7 gives:

A24: p.t = p.t′ ∧ q.t = q.t′
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From assumptions A8, A11, A17, A20 we can conclude that evalb.(p.t′)∧evalb.(q.t′),
and thus A24 establishes this case.

�AQ∈aQ1

Case AQ ∈ aQ2

From A9, A15, the definition of action refinement (7.2.1109), executable skip (3.4.831),
A3, A10, A11 and A12 and we can conclude:

A25: (s�wP = t�wP )

Again, using A2 and the definition of a well-formed UNITY program (4.3.143), and
the definition of ignored variables (3.4.2236) we can conclude:

A26: s�wQc = t�wQc

Rewriting this in the same way as the previous case, gives the desired result.

�AQ∈aQ2

�guard of.AQ.s

end of proof 7.2.11

C.2 Preservation of �

Theorem 7.2.7 P ref SUPERPOSE AND DECR FUNC PRSRVS REACHe GEN

P ref SUPERPOSE AND DECR FUNC PRSRVS CONe GEN

Let ≺ be a well-founded relation over some set A, and M ∈ State→A.

P vR,J Q ∧ Unity.Q ∧ ( Q`�JP ∧ JQ) ∧ (JP ∧ JQ ⇒ J)
∃W :: (wQ = wP ∪W ) ∧ (JP C W c) ∧ (wP ⊆ W c)

∀AQ : AQ ∈ aQ ∧ (∃AP :: (AP ∈ aP ) ∧ (AP R AQ)) : (guard of.AQ C wQ)
∀AP : AP ∈ aP : (JP ∧ JQ) Q` guard of.AP � (∃AQ :: (AP R AQ) ∧ guard of.AQ)
∃M :: (M C wQ) ∧ (∀k : k ∈ A : Q` (JP ∧ JQ ∧M = k) unless (M ≺ k))

∧ ∀k AP AQ : k ∈ A ∧AP ∈ aP ∧AP R AQ :
Q` (JP ∧ JQ ∧ guard of.AQ ∧M = k) unless (¬(guard of.AP ) ∨M ≺ k)

((JP P` p � q) ⇒ (JP ∧ JQ Q` p � q)) ∧ ((JP P` p   q) ⇒ (JP ∧ JQ Q` p   q))
J

proof of 7.2.7 (�-part)
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Assume the following for a well-founded relation ≺:

A1: P vR,J Q
A2: Unity.Q
A3: Q`�(JP ∧ JQ) ∧ (JP ∧ JQ ⇒ J)
A4: wQ = wP ∪W ∧ JP C W c ∧ wP ⊆ W c

A5: ∀AQ : AQ ∈ aQ ∧ (∃AP :: (AP ∈ aP ) ∧ (AP R AQ)) : (guard of.AQ C wQ)
A6: ∀AP : AP ∈ aP : (JP∧JQ) Q` guard of.AP � (∃AQ :: (AP R AQ)∧guard of.AQ)
A7: M C wQ
A8: ∀k :: Q` (JP ∧ JQ ∧M = k) unless (M ≺ k)
A9: ∀k AP AQ : AP ∈ aP ∧AP R AQ :

Q` (JP ∧ JQ ∧ guard of.AQ ∧M = k) unless (¬(guard of.AP ) ∨M ≺ k)

We have to prove that:

JP P` p � q ⇒ (JP ∧ JQ Q` p � q)

For this we use the following theorem directly taken from [Pra95]; it states an induc-
tion principle for the � operator that corresponds to the latter’s definition (4.5.446):

Theorem C.2.1 � Induction REACHe INDUCT1

For transitive and disjunctive R:

P, J :
(∀p, q :: (p C (wP ) ∧ q C (wP ) ∧ (�J) ∧ (J ∧ p ensures q)) ⇒ R.p.q)

(p � q) ⇒ R.p.q
J

take R = (λp q. JP ∧ JQ Q` p � q). Since we already have �-Transitivity, and
�-Disjunction, we are left with the following proof-obligation:

∀p q :: (p C wP ∧ q C wP∧ �JP ∧ (JP ∧ p ensures q)) ⇒ (JP ∧ JQ Q` p � q)

Choose arbitrary p and q, and assume:

A10: p C wP ∧ q C wP
A11: P`�JP

A12: P` JP ∧ p ensures q

Theorem 3.3.1928, stating confinement monotonicity, together with A4 and A10 gives:

A13: p C wQ ∧ q C wQ

Rewriting A12 with the definition of ensures (4.4.243), we know that there exists an
action AP , such that:

A14: P` JP ∧ p unless q
A15: AP ∈ aP
A16: ∀s t :: (evalb.(JP .s) ∧ evalb.(p.s) ∧ ¬evalb.(q.s) ∧ compile.AP .s.t) ⇒ evalb.(q.t)
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A17: Unity.P

Now we have to prove that:

JP ∧ JQ Q` p � q

⇐ (� Bounded Progress (4.5.1748), A7, ≺ is well-founded)

∀k :: JP ∧ JQ Q` p ∧M=k � (p ∧M≺k) ∨ q

⇐ (� Case distinction (4.5.1047))

∀k :: JP ∧ JQ Q` p ∧M=k ∧ ¬(guard of.AP )
�
(p ∧M≺k) ∨ q







false-guard-AP -part

∧
∀k :: JP ∧ JQ Q` p ∧M=k ∧ guard of.AP

�
(p ∧M≺k) ∨ q







true-guard-AP -part

Before we prove these two conjuncts we first prove the following lemma.

lemma 1: ∀s :: evalb.(JP .s) ∧ evalb.(p.s) ∧ ¬evalb.(guard of.AP .s) ⇒ evalb.(q.s)
Choose an arbitrary state s, and assume that:

evalb.(JP .s) ∧ evalb.(p.s) ∧ ¬evalb.(guard of.AP .s)

Since the guard of AP is false, compile.AP .s.t = (s = t), instantiating A16 with state
s and rewriting with these assumptions gives us:

(∀t : (¬evalb.(q.s) ∧ s = t) ⇒ evalb.(q.t))

which equals evalb.(q.s).
�lemma1

false-guard-AP -part
Theorem � Introduction (4.5.747, implication-part), assumptions A3, A7 and A13,
and lemma 1 establish this case.

�false-guard-AP -part

true-guard-AP -part
For arbitrary k we have to prove that:

JP ∧ JQ Q` p ∧M=k ∧ guard of.AP � (p ∧M≺k) ∨ q
= (logics)
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JP ∧ JQ Q` p ∧M=k ∧ guard of.AP � ((p ∧M≺k) ∨ q) ∨ ((p ∧M≺k) ∨ q)

⇐ (� Cancellation (4.5.1147), A7, A13)

JP ∧ JQ Q` p ∧M=k ∧ guard of.AP
�
(p ∧M≺k) ∨ q ∨ (p ∧M=k ∧ (∃AQ :: APRAQ ∧ guard of.AQ))







C1

∧
JP ∧ JQ Q` p ∧M=k ∧ (∃AQ :: APRAQ ∧ guard of.AQ) � (p ∧M≺k) ∨ q

}

C2

Before we continue with the proofs of these conjunct, we shall first prove another
lemma.

lemma 2: Q` (JP ∧ JQ) ∧ p unless q

= (logics)
Q` JQ ∧ (JP ∧ p) unless q
⇐ (preservation of unless (7.2.11112), A1, A2, A3, A4, A14, A17)
(JP ∧ p) C W c ∧ q C W c

⇐ (confinement of binary operators (3.3.1329) on first conjunct, and A4)
p C W c ∧ q C W c

⇐ (confinement monotonicity (3.3.1928) on both conjuncts)
p C wP ∧ q C wP ∧ wP ⊆ W c

Assumption A10 and A4 establishes this case.

�lemma2

proof of C1

JP ∧ JQ Q` p ∧M=k ∧ guard of.AP

�
(p ∧M≺k) ∨ q ∨ (p ∧M=k ∧ (∃AQ :: APRAQ ∧ guard of.AQ))







C1

= (logics)

JP ∧ JQ Q` M=k ∧ guard of.AP ∧ p
�
((M≺k ∨ (M=k ∧ (∃AQ :: APRAQ ∧ guard of.AQ))) ∧ p) ∨ q

⇐ (� PSP (4.5.1247), A13, lemma 2)

JP ∧ JQ Q` M=k ∧ guard of.AP

�
M≺k ∨ (M=k ∧ (∃AQ :: APRAQ ∧ guard of.AQ))

= (logics)

JP ∧ JQ Q` guard of.AP ∧M=k
�
((∃AQ :: APRAQ ∧ guard of.AQ) ∧M=k) ∨M≺k

⇐ (� PSP (4.5.1247), A7)
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JP ∧ JQ Q` guard of.AP � (∃AQ :: APRAQ ∧ guard of.AQ)
∧

Q` M = k ∧ JP ∧ JQ unless M ≺ k

Assumptions A6, A15 and A8 establish this.

�C1

proof of C2

JP ∧ JQ Q` p ∧M=k ∧ (∃AQ :: APRAQ ∧ guard of.AQ) � (p ∧M≺k) ∨ q
}

C2
⇐ (� Substitution (4.5.647), A5, A7, and A13)
JP ∧ JQ Q` (∃AQ :: APRAQ ∧ p ∧M=k ∧ guard of.AQ)

�
(∃AQ :: APRAQ ∧ ((p ∧M≺k) ∨ q))

⇐ (� Disjunction (4.5.1347), A5, A7, and A13)
∀AQ : APRAQ : JP ∧ JQ Q` p ∧M=k ∧ guard of.AQ � (p ∧M≺k) ∨ q
⇐ (� Introduction (4.5.747), A3, A5,A7 and A13)
∀AQ : APRAQ : Q` JP ∧ JQ ∧ p ∧M=k ∧ guard of.AQ

ensures
(p ∧M≺k) ∨ q

Assume:

A18: APRAQ

We are left with the proof obligations (definition of ensures (4.4.243))

Q` JP ∧ JQ ∧ p ∧M=k ∧ guard of.AQ

unless
(p ∧M≺k) ∨ q







unless-part

∧
∃AQ : AQ ∈ aQ :

{JP ∧ JQ ∧ p ∧M=k ∧ guard of.AQ ∧ ¬((p ∧M≺k) ∨ q)}
a
{(p ∧M≺k) ∨ q}















exists-part

proof of the unless-part
Assume for arbitrary actions a, and states s and t:

A19: a ∈ aQ
A20: compile.a.s.t
A21: evalb.(JP .s) ∧ evalb.(JQ.s) ∧ evalb.(p.s) ∧ (M.s = k) ∧ evalb.(guard of.AQ.s)
A22: ¬(M.s ≺ k) ∧ ¬evalb.(q.s))

We have to prove that:

(evalb.(JP .t) ∧ evalb.(JQ.t) ∧ evalb.(p.t) ∧ (M.t = k) ∧ evalb.(guard of.AQ.t))
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∨
(evalb.(p.t) ∧ (M.t ≺ k))
∨
evalb.(q.t)

From lemma 2 and assumptions A19, A20, A21 and A22 we know that:

A23: (evalb.(JP .t) ∧ evalb.(JQ.t) ∧ evalb.(p.t)) ∨ evalb.(q.t)

If evalb.(q.t) holds, then the proof has been established. So assume:

A24: ¬evalb.(q.t)

Then assumptions A23 and A24 leave us with the proof obligation:

((M.t = k) ∧ evalb.(guard of.AQ.t)) ∨ (M.t ≺ k)

From A8, A9, A19, A20, A21, A22 and the definition of unless (4.4.143) we can
deduce:

A25: M.t = k ∨ M.t ≺ k
A26: evalb.(guard of.AP .s)

⇒
(evalb.(guard of.AQ.t) ∧ (M.t = k)) ∨ ¬(evalb.(guard of.AP .t)) ∨ (M.t ≺ k)

Using A25, if M.t ≺ k then the proof has been established. Suppose M.t = k.
From A1, A3, A18, A21, and the definition of action refinement (7.2.1109), we can
conclude evalb.(guard of.AP .s), and hence assumption A26 gives:

A27: evalb(guard of.AQ.t) ∨ ¬(evalb.(guard of.AP .t))

Suppose evalb.(guard of.AP .t) holds, then A27 establishes the proof. To reach a
contradiction, we assume that:

A28: ¬(evalb.(guard of.AP .t))

Now lemma 1, A28, A23, A24 imply evalb.(q.t) which obviously contradicts A24.
�unless−part

proof of the exists-part:
The action that does the trick is AQ (introduced in A18). From A1 we know that
R is bitotal, and hence using A15, A18, and the definition of a bitotal relation
(A.3.3217) we can infer that AQ is indeed an action in aQ. Assume for arbitrary
states s and t that:

A29: evalb.(JP .s)∧ evalb.(JQ.s)∧ evalb.(p.s)∧ (M.s = k)∧∧evalb.(guard of.AQ.s)
A30: ¬(M.s ≺ k) ∧ ¬evalb.(q.s)
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A31: compile.AQ.s.t

We are left with the proof obligation:

(p.t ∧ (M.t ≺ k)) ∨ evalb.(q.t)

From A15 and the always-enabledness of actions in the universe ACTION (3.4.1934)
we know that there exists a state t′ such that

A32: compile.AP .s.t′

and consequently from A1, A18, the definition of action refinement (7.2.1109), and
assumptions A3, A29, A31, A32 we can infer that:

A33: t�wP = t′ �wP

From assumption A16, A29, and A32 we can conclude that:

A34: evalb.(q.t′)

Finally from A33, A34, and A10 we can conclude evalb.(q.t).
�exists−part

� C2

�true-guard-AP -part

end of proof of Theorem 7.2.7 (�-part)



Appendix D

The formalisation of
distributed hylomorphisms

This appendix contains the definitions and theorems formalising distributed hylomor-
phisms as they appear in the HOL theories depicted in Figure 8.14151. For readabilty,
however, we again sometimes omit nr rec, nr sent, and M as parameters in some defi-
nitions or theorems. It must be noted that in HOL this is not possible, when one of
these functions is used in the right hand side of a definition, it has to be a parameter
of the constant that is being defined.

D.1 PLUM

First, PLUM’s initial condition, write variables and read variables are defined.

Definition D.1.1 Initial Condition PLUM

Initial Condition PLUM.P.neighs.starter.father.idle
= ¬(idle.starter) ∧ ∀p : p ∈ P : ((p 6= starter) ⇒ idle.p)
∧ (father.starter = starter) ∧ ASYNC Init.P.neighs

Definition D.1.2 Write Vars PLUM

Write Vars PLUM.P.neighs.V.father.idle
= ASYNC Vars.P.neighs ∪ {idle.p | p ∈ P} ∪ {father.p | p ∈ P} ∪ {V.p | p ∈ P}

Definition D.1.3 Read Vars PLUM

Read Vars PLUM.P.neighs.V.father.idle
= Write Vars PLUM.P.neighs.V.father.idle

253
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The following definition specifies that all variables declared as write and read vari-
ables in PLUM are distinct. (Since the communication variables play an important
role in this definition, we have not omitted them as parameters.)

Definition D.1.4 distinct PLUM Vars

distinct PLUM Vars.P.neighs.nr rec.nr sent.M.V.father.idle
= ∀p, q, r, s ::

((idle.p = idle.q) = (p = q)) ∧ ((nr sent.p.q = nr sent.r.s) = ((p = r) ∧ (q = s)))
((V.p = V.q) = (p = q)) ∧ ((nr rec.p.q = nr rec.r.s) = ((p = r) ∧ (q = s)))
((father.p = father.q) = (p = q)) ∧ ((M.p.q = M.r.s) = ((p = r) ∧ (q = s)))
(idle.p 6= V.q) ∧ (idle.p 6= father.q) ∧ (idle.p 6= nr sent.q.r) ∧ (idle.p 6= nr rec.q.r)
(idle.p 6= M.q.r) ∧ (V.p 6= father.q) ∧ (V.p 6= nr sent.q.r) ∧ (V.p 6= nr rec.q.r)
(V.p 6= M.q.r) ∧ (father.p 6= nr sent.q.r) ∧ (father.p 6= nr rec.q.r)
(father.p 6= M.q.r) ∧ (nr rec.p.q 6= nr sent.r.s) ∧ (nr rec.p.q 6= M.r.s)
(nr sent.p.q 6= M.r.s)

In the following definitions, PLUM’s actions are defined.

Definition D.1.5 IDLE

IDLE.p.q.idle.h.V.father
= strengthen guard.(VAR.(idle.p) ∧mit.q.p)

.receive.p.q.h.(V.p) ‖ father.p := CONST.q ‖ idle.p := false

Definition D.1.6 COL

COL.p.q.neighs.idle.h.V
= strengthen guard.(¬VAR.(idle.p) ∧mit.q.p ∧ collectingPLUM .p)

.receive.p.q.h.(V.p)

Definition D.1.7 PROP

PROP.p.q.neighs.idle.PROP mes.father
= strengthen guard.(¬VAR.(idle.p) ∧ cp.p.q ∧ propagatingPLUM .p)

.send.p.q.PROP mes.

Definition D.1.8 DONE

DONE.p.q.neighs.DONE mes.father
= strengthen guard.(finished collecting and propagating.p

∧¬reported to father.p ∧ (q = father.p))
.send.p.q.DONE mes.

Subsequently, PLUM is defined as an object of type Uprog as follows:
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Definition D.1.9

PLUM.P.neighs.starter.iniA.h.PROP mes.DONE mes.V.idle.father
=
({IDLE.p.q.idle.(h.p).V.father | p ∈ P ∧ q ∈ neighs.p}
∪
{COL.p.q.neighs.idle.(h.p).V | p ∈ P ∧ q ∈ neighs.p}
∪
{PROP.p.q.neighs.idle.(PROP mes.p).father | p ∈ P ∧ q ∈ neighs.p}
∪
{DONE.p.q.neighs.(DONE mes.p).father | p ∈ P ∧ q ∈ neighs.p}

,
Initial Condition PLUM.P.neighs.starter.father.idle ∧ iniA

,
Read Vars PLUM.P.neighs.V.father.idle

,
Write Vars PLUM.P.neighs.V.father.idle

)

Finally, the following theorem states the conditions under which PLUM is a well-
formed UNITY program (i.e. satisfies the predicate Unity).

Theorem D.1.10 dUNITY PLUM
Network.P.starter.neighs

∀p, e : p ∈ P ∧ e CWrite Vars PLUM : (h.p.e) C Write Vars PLUM
∀p : p ∈ P : PROP mes.p C Write Vars PLUM ∧ DONE mes.p C Write Vars PLUM

Unity.(PLUM.P.neighs.starter.iniA.h.PROP mes.DONE mes.V.idle.father)

D.2 ECHO

ECHO’s initial condition, write and read variables are the same as those of PLUM.

Definition D.2.1 Initial Condition ECHO

Initial Condition ECHO.P.neighs.starter.idle.father
= Initial Condition PLUM.P.neighs.starter.idle.father

Definition D.2.2 Write Vars ECHO

Write Vars ECHO.P.neighs.V.idle.father = Write Vars PLUM.P.neighs.V.idle.father

Definition D.2.3 Read Vars ECHO

Read Vars ECHO.P.neighs.V.idle.father = Read Vars PLUM.P.neighs.V.idle.father

Definition D.2.4 distinct ECHO Vars

distinct ECHO Vars.P.neighs.nr rec.nr sent.M.V.father.idle
= distinct PLUM Vars.P.neighs.nr rec.nr sent.M.V.father.idle
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ECHO’s actions are defined in terms of PLUM’s action.

Definition D.2.5 IDLE ECHO

IDLE ECHO.p.q.idle.h.V.father
= IDLE.p.q.idle.h.V.father

Definition D.2.6 COL ECHO

COL ECHO.p.q.neighs.idle.h.V
=strengthen guard.(¬propagatingECHO.p)

.COL.p.q.neighs.idle.h.V

Definition D.2.7 PROP ECHO

PROP ECHO.p.q.neighs.idle.PROP mes.father
= PROP.p.q.neighs.idle.PROP mes.M.father

Definition D.2.8 DONE ECHO

DONE ECHO.p.q.neighs.DONE mes.father
= DONE.p.q.neighs.DONE mes.father

Definition D.2.9

ECHO.P.neighs.starter.iniA.h.PROP mes.DONE mes.V.idle.father
=
({IDLE ECHO.p.q.idle.(h.p).V.father | p ∈ P ∧ q ∈ neighs.p}
∪
{COL ECHO.p.q.neighs.idle.(h.p).V | p ∈ P ∧ q ∈ neighs.p}
∪
{PROP ECHO.p.q.neighs.idle.(PROP mes.p).father | p ∈ P ∧ q ∈ neighs.p}
∪
{DONE ECHO.p.q.neighs.(DONE mes.p).father | p ∈ P ∧ q ∈ neighs.p}

,
Initial Condition ECHO.P.neighs.starter.idle.father ∧ iniA

,
Read Vars ECHO.P.neighs.V.idle.father

,
Write Vars ECHO.P.neighs.V.idle.father

)

Theorem D.2.10 dUNITY ECHO

Network.P.starter.neighs
∀p, e : p ∈ P ∧ e C Write Vars ECHO : (h.p.e) C Write Vars ECHO

∀p : p ∈ P : PROP mes.p C Write Vars ECHO ∧ DONE mes.p C Write Vars ECHO
Unity.(ECHO.P.neighs.starter.iniA.h.PROP mes.DONE mes.V.idle.father)
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D.3 Tarry

Tarry has additional variables le rec for each process in P. For the starter the value
of le rec is initially true, and for the followers it is initially false.

Definition D.3.1 Initial Condition Tarry

Initial Condition Tarry.P.neighs.starter.idle.father.le rec
= Initial Condition PLUM.P.neighs.starter.idle.father
∧ (le rec.starter) ∧ ∀p : p ∈ P : ((p 6= starter) ⇒ ¬le rec.p)

Definition D.3.2 Write Vars Tarry

Write Vars Tarry.P.neighs.V.idle.father.le rec
= Write Vars Tarry.P.neighs.V.idle.father ∪ {le rec.p | p ∈ P}

Definition D.3.3 Read Vars Tarry

Read Vars Tarry.P.neighs.V.idle.father.le rec
= Write Vars Tarry.P.neighs.V.idle.father.le rec

Definition D.3.4 distinct Tarry Vars

distinct Tarry Vars.P.neighs.nr rec.nr sent.M.V.father.idle.le rec
= (distinct PLUM Vars.P.neighs.nr rec.nr sent.M.V.father.idle) ∧
∀p, q, r, s ::
((le rec.p = le rec.q) = (p = q)) ∧ (le rec.p 6= idle.q) ∧ (le rec.p 6= V.q)
(le rec.p 6= father.q) ∧ (le rec.p 6= nr sent.r.s) ∧ (le rec.p 6= nr rec.r.s)
(le rec.p 6= M.r.s)

Tarry’s actions are defined in terms of PLUM’s actions.

Definition D.3.5 IDLE Tarry

IDLE Tarry.p.q.idle.h.V.father.le rec
= augment.(IDLE.p.q.idle.h.V.father)

.(le rec.p := true)

Definition D.3.6 COL Tarry

COL Tarry.p.q.neighs.idle.h.V.le rec
= strengthen guard.(¬VAR.(le rec.p))

.augment.(COL.p.q.neighs.idle.h.V)
.(le rec.p := true)

Definition D.3.7 PROP Tarry

PROP Tarry.p.q.neighs.idle.PROP mes.father.le rec
= strengthen guard.(VAR.(le rec.p))

.augment.(PROP.p.q.neighs.idle.PROP mes.father)
.(le rec.p := false)
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Definition D.3.8 DONE Tarry

DONE Tarry.p.q.neighs.DONE mes.f.le rec
= augment.DONE.p.q.neighs.DONE mes.father

.(le rec.p := false)

Definition D.3.9

Tarry.P.neighs.starter.iniA.h.PROP mes.DONE mes.V.idle.father.le rec
=
({IDLE Tarry.p.q.idle.(h.p).V.f.le rec | p ∈ P ∧ q ∈ neighs.p}
∪
{COL Tarry.p.q.neighs.idle.(h.p).V.le rec | p ∈ P ∧ q ∈ neighs.p}
∪
{PROP Tarry.p.q.neighs.idle.(PROP mes.p).father.le rec | p ∈ P ∧ q ∈ neighs.p}
∪
{DONE Tarry.p.q.neighs.(DONE mes.p).father.le rec | p ∈ P ∧ q ∈ neighs.p}

,
Initial Condition Tarry.P.neighs.starter.idle.father.le rec ∧ iniA

,
Read Vars Tarry.P.neighs.V.idle.father.le rec

,
Write Vars Tarry.P.neighs.V.idle.father.le rec

)

Theorem D.3.10
Network.P.starter.neighs

∀p, e : p ∈ P ∧ e C Write Vars Tarry : (h.e) C Write Vars Tarry
∀p : p ∈ P : PROP mes.p C Write Vars Tarry ∧ DONE mes.p C Write Vars Tarry

Unity.(Tarry.P.neighs.starter.iniA.h.PROP mes.DONE mes.V.idle.father.le rec

From Chapter 9 we know (see page 192) that termination detection can only be proved
using the refinement framework if, for all distributed hylomorphisms, we assume that:

∀p, e : p ∈ P ∧ e C wPLUM : (h.p.e) C wPLUM
∀p : p ∈ P : PROP mes.p C wPLUM ∧ DONE mes.p C wPLUM

Consequently, the following theorem has a more suitable form for concluding well-
formedness of Tarry during the verification activities in Chapter 9 (Section 9.4):

Theorem D.3.11 dUNITY Tarry

Network.P.starter.neighs
∀p, e : p ∈ P ∧ e C Write Vars PLUM : (h.e) C Write Vars Tarry

∀p : p ∈ P : PROP mes.p C Write Vars Tarry ∧ DONE mes.p C Write Vars Tarry
Unity.(Tarry.P.neighs.starter.iniA.h.PROP mes.DONE mes.V.idle.father.le rec
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D.4 DFS

DFS has additional variables lp rec for each process in P which do not need to be
initialised.

Definition D.4.1 Initial Condition DFS

Initial Condition DFS.P.neighs.starter.idle.father.le rec
= Initial Condition Tarry.P.neighs.starter.idle.father

Definition D.4.2 Write Vars DFS

Write Vars DFS.P.neighs.V.idle.father.le rec.lp rec
= Write Vars Tarry.P.neighs.V.idle.father ∪ {lp rec.p | p ∈ P}

Definition D.4.3 Read Vars DFS

Read Vars DFS.P.neighs.V.idle.father.le rec.lp rec
= Write Vars DFS.P.neighs.V.idle.father.le rec.lp rec

Definition D.4.4 distinct DFS Vars

distinct DFS Vars.P.neighs.nr rec.nr sent.M.V.father.idle.le rec.lp rec
= distinct Tarry Vars.P.neighs.nr rec.nr sent.M.V.father.idle.le rec ∧
∀p, q, r, s ::
((lp rec.p = lp rec.q) = (p = q)) ∧ (lp rec.p 6= idle.q) ∧ (lp rec.p 6= V.q)
(lp rec.p 6= father.q) ∧ (lp rec.p 6= nr sent.r.s) ∧ (lp rec.p 6= nr rec.r.s)
(lp rec.p 6= M.r.s) ∧ (lp rec.p 6= le rec.q))

DFS’s actions are defined in terms of DFS’s actions.

Definition D.4.5 IDLE DFS

IDLE DFS.p.q.idle.h.V.father.lp rec
= augment.(IDLE Tarry.p.q.idle.h.V.father.le rec)

.(lp rec.p := q)

Definition D.4.6 COL DFS

COL DFS.p.q.neighs.idle.h.V.le rec.lp rec
= augment.(COL Tarry.p.q.neighs.idle.h.V.le rec)

.(lp rec.p := q)

Definition D.4.7 PROP lp rec DFS

PROP lp rec DFS.p.q.neighs.idle.PROP mes.father.le rec.lp rec
= strengthen guard.((CONST.q) = (VAR.(lp rec.p)))

.(PROP Tarry.p.q.neighs.idle.PROP mes.father.le rec)
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Definition D.4.8 PROP not lp rec DFS

PROP not lp rec DFS.p.q.neighs.idle.PROP mes.father.le rec.lp rec
= strengthen guard.(∀x : x ∈ neighs.p ∧ (CONST.x) = (VAR.(lp rec.p)) : 6= cp.p.x)

.(PROP Tarry.p.q.neighs.idle.PROP mes.father.le rec)

Definition D.4.9 DONE DFS

DONE DFS.p.q.neighs.DONE mes.father.le rec
= DONE Tarry.p.q.neighs.DONE mes.father.le rec

Definition D.4.10

DFS.P.neighs.starter.iniA.h.PROP mes.DONE mes.V.idle.father.le rec.lp rec
=
({IDLE DFS.p.q.idle.(h.p).V.father.le rec.lp rec | p ∈ P ∧ q ∈ neighs.p}
∪
{COL DFS.p.q.neighs.idle.(h.p).V.le rec.lp rec | p ∈ P ∧ q ∈ neighs.p}
∪
{PROP lp rec DFS.p.q.neighs.idle.(PROP mes.p).father.le rec.lp rec | p ∈ P ∧

q ∈ neighs.p}
∪
{PROP not lp rec DFS.p.q.neighs.idle.(PROP mes.p).father.le rec.lp rec | p ∈ P ∧

q ∈ neighs.p}
∪
{DONE DFS.p.q.neighs.(DONE mes.p).M.father.le rec | p ∈ P ∧ q ∈ neighs.p}

,
Initial Condition DFS.P.neighs.starter.idle.father.le rec ∧ iniA

,
Read Vars DFS.P.neighs.V.idle.father.le rec

,
Write Vars DFS.P.neighs.V.idle.father.le rec

)

Theorem D.4.11
Network.P.starter.neighs

∀p, e : p ∈ P ∧ e C Write Vars DFS : (h.e) C Write Vars DFS
∀p : p ∈ P : PROP mes.p C Write Vars DFS ∧ DONE mes.p C Write Vars DFS

Unity.(DFS.P.neighs.starter.iniA.h.PROP mes.DONE mes.V.idle.father.le rec.lp rec

And, again in more suitable form:

Theorem D.4.12 dUNITY DFS
Network.P.starter.neighs

∀p, e : p ∈ P ∧ e C Write Vars PLUM : (h.e) C Write Vars DFS
∀p : p ∈ P : PROP mes.p C Write Vars DFS ∧ DONE mes.p C Write Vars DFS

Unity.(DFS.P.neighs.starter.iniA.h.PROP mes.DONE mes.V.idle.father.le rec.lp rec
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D.5 Refinement orderings

D.5.1 PLUM and ECHO

The theorems characterising the bitotal relation between the actions of PLUM and
ECHO are stated below, and can be found in the theory ECHO (see Figure 8.14151).

Theorem D.5.1 R PLUM ECHO IDLE DEF
p ∈ P ∧ q ∈ neighs.p

R plum echo.(IDLE.p.q.idle.(h.p).V.father)
.(IDLE ECHO.p.q.idle.(h.p).V.father)

Theorem D.5.2 R PLUM ECHO COL DEF
p ∈ P ∧ q ∈ neighs.p

R plum echo.(COL.p.q.neighs.idle.(h.p).V)
.(COL ECHO.p.q.neighs.idle.(h.p).V)

Theorem D.5.3 R PLUM ECHO PROP DEF
p ∈ P ∧ q ∈ neighs.p

R plum echo.(PROP.p.q.neighs.idle.(PROP mes.p).father)
.(PROP ECHO.p.q.neighs.idle.(PROP mes.p).father)

Theorem D.5.4 R PLUM ECHO DONE DEF
p ∈ P ∧ q ∈ neighs.p

R plum echo.(DONE.p.q.neighs.(DONE mes.p).father)
.(DONE ECHO.p.q.neighs.(DONE mes.p).father)

The following theorem states conditions under which R plum echo is bitotal.

Theorem D.5.5 BITOTAL R PLUM ECHO

Network.P.neighs.starter
distinct ECHO Vars.P.neighs.nr rec.nr sent.M.V.father.idle

bitotal.R plum echo
.a(PLUM.P.neighs.starter.iniA.h.PROP mes.DONE mes.V.idle.father)
.a(ECHO.P.neighs.starter.iniA.h.PROP mes.DONE mes.V.idle.father)

Finally, we can prove that ECHO refines PLUM. (Note that in Theorem 8.12.1149

the hypothesis were assumed implicitly):

Theorem D.5.6 ECHO refines PLUM

Network.P.neighs.starter
distinct ECHO Vars.P.neighs.nr rec.nr sent.M.V.father.idle

PLUM vR plum echo, J ECHO
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D.5.2 PLUM and Tarry

The theorems characterising the bitotal relation between the actions of PLUM and
Tarry are stated below, and can be found in the theory Tarry (see Figure 8.14151).

Theorem D.5.7 R PLUM Tarry IDLE DEF
p ∈ P ∧ q ∈ neighs.p

R plum tarry.(IDLE.p.q.idle.(h.p).V.father)
.(IDLE Tarry.p.q.idle.(h.p).V.f.le rec)

Theorem D.5.8 R PLUM Tarry COL DEF
p ∈ P ∧ q ∈ neighs.p

R plum tarry.(COL.p.q.neighs.idle.(h.p).V)
.(COL Tarry.p.q.neighs.idle.(h.p).V.le rec)

Theorem D.5.9 R PLUM Tarry PROP DEF
p ∈ P ∧ q ∈ neighs.p

R plum tarry.(PROP.p.q.neighs.idle.(PROP mes.p).father)
.(PROP Tarry.p.q.neighs.idle.(PROP mes.p).father.le rec)

Theorem D.5.10 R PLUM Tarry DONE DEF
p ∈ P ∧ q ∈ neighs.p

R plum tarry.(DONE.p.q.neighs.(DONE mes.p).father)
.(DONE Tarry.p.q.neighs.(DONE mes.p).father.le rec)

The following theorem states conditions under which R plum tarry is bitotal.

Theorem D.5.11 BITOTAL R PLUM Tarry

Network.P.neighs.starter
distinct Tarry Vars.P.neighs.nr rec.nr sent.M.V.father.idle.le rec

bitotal.R plum tarry
.a(PLUM.P.neighs.starter.iniA.h.PROP mes.DONE mes.V.idle.father)
.a(Tarry.P.neighs.starter.iniA.h.PROP mes.DONE mes.V.idle.father.le rec)

Finally, we can prove that Tarry refines PLUM. (Note that in Theorem 8.12.2149

the hypothesis were assumed implicitly):

Theorem D.5.12 Tarry refines PLUM

Network.P.neighs.starter
distinct Tarry Vars.P.neighs.nr rec.nr sent.M.V.father.idle.le rec

PLUM vR plum tarry, J Tarry

D.5.3 Tarry and DFS

The theorems characterising the bitotal relation between the actions of Tarry and
DFS are stated below, and can be found in the theory DFS (see Figure 8.14151).
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Theorem D.5.13 R Tarry DFS IDLE DEF
p ∈ P ∧ q ∈ neighs.p

R tarry dfs.(IDLE Tarry.p.q.idle.(h.p).V.f.le rec)
.(IDLE DFS.p.q.idle.(h.p).V.father.le rec.lp rec)

Theorem D.5.14 R Tarry DFS COL DEF
p ∈ P ∧ q ∈ neighs.p

R plum dfs.(COL Tarry.p.q.neighs.idle.(h.p).V.le rec)
.(COL DFS.p.q.neighs.idle.(h.p).V.le rec.lp rec)

Theorem D.5.15 R Tarry DFS PROP lp rec DEF
p ∈ P ∧ q ∈ neighs.p

R tarry dfs.(PROP Tarry.p.q.neighs.idle.(PROP mes.p).father.le rec)
.(PROP lp rec DFS.p.q.neighs.idle.(PROP mes.p).father.le rec.lp rec)

Theorem D.5.16 R Tarry DFS PROP not lp rec DEF
p ∈ P ∧ q ∈ neighs.p

R tarry dfs.(PROP Tarry.p.q.neighs.idle.(PROP mes.p).father.le rec)
.(PROP not lp rec DFS.p.q.neighs.idle.(PROP mes.p).father.le rec.lp rec)

Theorem D.5.17 R Tarry DFS DONE DEF
p ∈ P ∧ q ∈ neighs.p

R tarry dfs.(DONE Tarry.p.q.neighs.(DONE mes.p).father.le rec)
.(DONE DFS.p.q.neighs.(DONE mes.p).M.father.le rec)

The following theorem states conditions under which R tarry dfs is bitotal.

Theorem D.5.18 BITOTAL R Tarry DFS

Network.P.neighs.starter
distinct DFS Vars.P.neighs.nr rec.nr sent.M.V.father.idle.le rec.lp rec

bitotal.R tarry dfs
.a(Tarry.P.neighs.starter.iniA.h.PROP mes.DONE mes.V.idle.father.le rec)
.a(DFS.P.neighs.starter.iniA.h.PROP mes.DONE mes.V.idle.father.le rec.lp rec)

Finally, we can prove that DFS refines Tarry. (Note that in Theorem 8.12.3149 the
hypothesis were assumed implicitly):

Theorem D.5.19 DFS refines Tarry

Network.P.neighs.starter
distinct DFS Vars.P.neighs.nr rec.nr sent.M.V.father.idle.le rec.lp rec

Tarry vR tarry dfs, J DFS



264 Appendix D The formalisation of distributed hylomorphisms



Bibliography

[Abr96] J.-R. Abrial. The B-Book: Assigning programs to meanings. Cambridge
University Press, 1996.

[Age91] S. Agerholm. Mechanizing program verification in HOL. In M. Archer,
J.J. Joyce, K.N. Levitt, and P.J. Windley, editors, Proceedings of the 1991
International Workshop on HOL Theorem Proving and its Applications,
pages 208–222, Davis, August 1991. IEEE Computer Society Press.

[AGMT95] S. Aitken, P. Gray, T.F. Melham, and M. Thomas. Interactive theo-
rem proving: An emperical study of user activity. Journal of Symbolic
Computation, 1995.

[Ait96] S. Aitken. An Analysis of Errors in Interactive Proof Attempts. Technical
report, Department of Computer Science, University of Glasgow, 1996.

[AL88] M. Abadi and L. Lamport. The existence of refinement mappings. In
Proceedings of the 3rd IEEE Symposium on Logic in Computer Science,
pages 165–175, 1988. Also available as DEC SRC Technical Report 29,
1988.

[AL91] M. Abadi and L. Lamport. The existence of refinement mappings. The-
oretical Computer Science, 82(2):253–284, 1991. Also [AL88].

[ALW93] M.D. Aagaard, M.E. Leeser, and P.J. Windley. Toward a super duper
hardware tactic. In J.J. Joyce and C.H. Segers, editors, Proceedings of
the 6th International Workshop on Higher Order Logic Theorem Proving
and its Applications, volume 780 of LNCS. Springer-Verlag, August 1993.

[And92a] F. Andersen. HOL-UNITY, 1992. http://lal.cs.byu.edu/lal/
holdoc/library.html.

[And92b] F. Andersen. A Theorem Prover for UNITY in Higher Order Logic. PhD
thesis, Technical University of Denmark, March 1992.

[APP93] F. Andersen, K.D. Petersen, and J.S. Petterson. Program verification
using HOL-UNITY. In J.J. Joyce and C.H. Segers, editors, Proceedings of
the 6th International Workshop on Higher Order Logic Theorem Proving
and its Applications, volume 780 of LNCS. Springer-Verlag, August 1993.

265

http://lal.cs.byu.edu/lal/holdoc/library.html
http://lal.cs.byu.edu/lal/holdoc/library.html


266 BIBLIOGRAPHY

[Bac78] R.J.R. Back. On the Correctness of Refinement Steps in Program Devel-
opment. PhD thesis, University of Helsinki, 1978.

[Bac80] R.J.R. Back. Correctness Preserving Program Refinements: Proof Theory
and Applications., volume 131 of Mathematical Centre Tracts. Mathemat-
ical Centre, Amsterdam, the Netherlands, 1980.

[Bac81] R.J.R. Back. On correct refinement of programs. Journal of Computer
and System Sciences, 23(1):49–68, 1981.

[Bac88] R.J.R. Back. A calculus of refinements for program derivations. Acta
Informatica, 25:593–624, 1988.

[Bac89] R.J.R. Back. A method for refining atomicity in parallel algorithms. In
E. Odijk, M. Rem, and J.C. Syre, editors, PARLE ’89, volume 366 of
LNCS, pages 199–216. Springer-Verlag, 1989.

[Bac90] R.J.R. Back. Refinement calculus, Part II: Parallel and reactive pro-
grams. In J.W. de Bakker, W.P. de Roever, and G. Rozenberg, editors,
Stepwise Refinement of Distributed Systems: Models, Formalisms, Cor-
rectness, volume 430 of LNCS, pages 67–93. Springer-Verlag, 1990.

[Bac93] R.J.R. Back. Atomicity Refinement in a Refinement Calculus framework.
Reports on computer science and mathematics Series A, No. 141, Åbo
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Series A, Åbo Akademi, 1989.



BIBLIOGRAPHY 269

[BvW90] R.J.R. Back and J. von Wright. Refinement calculus, Part I: Sequen-
tial nondeterministic programs. In J.W. de Bakker, W.P. de Roever,
and G. Rozenberg, editors, Stepwise Refinement of Distributed Systems:
Models, Formalisms, Correctness, volume 430 of LNCS, pages 42–66.
Springer-Verlag, 1990.

[BvW94] R.J.R. Back and J. von Wright. Trace refinement of action systems. In
Proceedings of the 5th International Conference on Concurrency Theory
(CONCUR’94), volume 836 of LNCS, pages 367–384. Springer-Verlag,
1994.

[BvW98] R.J.R. Back and J. von Wright. Refinement Calculus: A Systematic In-
troduction. Graduate Texts in Computer Science. Springer-Verlag, 1998.

[BW90] R.J.R. Back and J. von Wright. Refinement concepts formalized in higher
order logic. Formal Aspects of Computing, 2:247–272, 1990.

[BW96] M. Butler and M. Waldén. Distributed system development in B. In Pro-
ceedings of the First B Conference, pages 155–168, 1996. Also available
as Technical Report TUCS 1996, No. 53.

[BW98] M. Butler and M. Waldén. Parallel programming with the B Method. In
E. Sekerinski and K. Sere, editors, Program Development by Refinement:
Case Studies Using the B Method, chapter 5, pages 183–195. Springer-
Verlag, 1998.

[CG92] D. Craigen and S. Gerhart. An international survey of industrial applica-
tions of formal methods. In Z User Workshop, London 1992, pages 1–5.
Springer-Verlag, 1992.

[CGR93] D. Craigen, S. Gerhart, and T. Ralston. Formal methods reality check:
Industrial usage. In J.C.P. Woodcock and P.G. Larsen, editors, FME’93:
Industrial-Strength Formal Methods, volume 670 of LNCS, pages 250–267.
Springer-Verlag, 1993.

[CH88] T. Coquand and G. Huet. The calculus of constructions. Information
and Computation, 76:95–120, 1988.

[Cha82] E.J.H. Chang. Echo algorithms: Depth parallel operations on general
graphs. IEEE Transactions on Software Engineering, 8(4):391–401, 1982.

[Che83] T.-Y. Cheung. Graph traversal techniques and the maximum flow prob-
lem in distributed computation. IEEE Transactions on Software Engi-
neering, 9(4):504–512, 1983.

[Che95] B. Chetali. Formal Verification of Concurrent Programs: How to Specify
UNITY Using the Larch Prover. Technical Report 2475, INRIA Lorraine,
1995.



270 BIBLIOGRAPHY

[Cho93] C-T Chou. Predicates, temporal logic, and simulations. In J.J. Joyce
and C.-J.H. Seger, editors, Higher Order Logic Theorem Proving and its
Applications, 6th International Workshop, volume 780 of LNCS. Springer-
Verlag, 1993.

[Cho94a] C-T Chou. Mechanical verification of distributed algorithms in higher
order logic. In T.F. Melham and J. Camilleri, editors, Proceedings of the
7th International Workshop on Higher Order Logic Theorem Proving and
its Applications, volume 859 of LNCS. Springer-Verlag, September 1994.

[Cho94b] C-T Chou. Practical Use of the Notions of Events and Causality in
Reasoning about Distributed Algorithms. Technical Report CSR-940035,
UCLA, October 1994.

[Cho95] C-T Chou. Using Operational Intuition about Events and Causality
in Assertional Proofs. Technical Report CSR-950013, UCLA, February
1995.

[CM89] K.M. Chandy and J. Misra. Parallel Program Design. Addison-Wesley,
Austin, Texas, May 1989.

[CS95] D.A. Cyrluk and M.K. Srivas. Theorem proving: not an esteric diversion,
but the unifying framework for industrial verification. In Proceedings of
the IEEE Conference on Computer Design (ICCD’95), Texas, Austin,
October 1995.

[Dij74] E.W. Dijkstra. Self-stabilizing systems in spite of distributed control.
Communications of the ACM, 17(11):643–644, 1974.

[Dij76] E.W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.

[Din97] J. Dingel. Approximating UNITY. In Proceedings of the 2nd Interna-
tional Conference on Synchronization Models and Languages (COORDI-
NATION’97), volume 1282 of LNCS, pages 320–337, Berlin, Germany,
September 1997. Springer Verlag.

[DS80] E.W. Dijkstra and C.S. Scholten. Termination detection for diffusing
computations. Information Processing Letters, 11(1):1–4, 1980.

[Fin79] S.G. Finn. Resynch procedures and a fail-safe network protocol. IEEE
Transactions, 27:840–845, 1979.

[Fra80] N. Francez. Distributed termination. ACM Transactions on Programming
Languages and Systems, 2(1):42–55, 1980.

[Fra86] N. Francez. Fairness. Springer-Verlag, 1986.

[GCR94] S. Gerhart, D. Craigen, and T. Ralston. Experience with formal methods
in critical systems. IEEE Software, 11:21–28, January 1994.



BIBLIOGRAPHY 271

[Ger75] S.L. Gerhart. Correctness preserving program transformations. In Pro-
ceedings of the 2nd ACM Conference of Principles of Programming Lan-
guages, pages 54–66, 1975.

[GHG+93] J.V. Guttag, J.J. Horning, S.J. Garland, K.D. Jones, A. Modet, and J.M.
Wing. Larch: Languages and Tools for Formal Specification. Springer-
Verlag Texts and Monographs in Computer Science, 1993.

[GKSU98] H.J.M. Goeman, J.N. Kok, K. Sere, and R.T. Udink. Coordination in
the ImpUnity Framework. Science of computer programming, 31:313–334,
1998.

[GL95] E.L. Gunter and L. Libkin. Interfacing HOL90 with a functional database
query language. In E.T. Schubert, P.J. Windley, and J. Alves-Foss, ed-
itors, Proceedings of the 8th International Workshop on Higher Order
Logic Theorem Proving and its Applications, volume 971 of LNCS, As-
pen Grove, Utah, USA, September 1995. Springer-Verlag.

[GM93] M.J.C. Gordon and T.F. Melham. Introduction to HOL. Cambridge
University Press, 1993.

[GMS97] J.F. Groote, F. Monin, and J. Springintveld. A Computer Checked Al-
gebraic Verification of a Distributed Summation Algorithm. Technical
Report CSR-97-14, Eindhoven University of Technology, October 1997.

[Gol90a] D.M. Goldschlag. Mechanically verifying concurrent programs with
the boyer-moore prover. IEEE Transaction on Software Engineering,
16(9):1005–1023, September 1990.

[Gol90b] D.M. Goldschlag. Mechanizing UNITY. In Programming Concepts
and Methods, pages 387–414. Elsevier Science Publishers B.V. (North-
Holland), 1990.

[Gol92] D.M. Goldschlag. Mechanically Verifying Concurrent Programs. PhD
thesis, Computational Logic Inc., Austin, Texas., 1992.

[Gor85] M.J.C. Gordon. HOL: A Machine Oriented Formulation of Higher Order
Logic. Technical Report 68, University of Cambridge, Computer Labo-
ratory, 1985.

[Gor89] M.J.C. Gordon. Mechanizing programming logics in higher order logic.
In P.A. Subrahmanyam and G. Birtwistle, editors, Current Trends in
Hardware Verification and Automated Theorem Proving, pages 387–489.
Springer-Verlag, 1989.

[GP94] J.F. Groote and A. Ponse. The syntax and semantics of µCRL. In
A. Ponse, C. Verhoef, and S.F.M. Vlijmen, editors, Algebra of Commu-
nicating Processes, Workshops in computing, pages 26–62, 1994.



272 BIBLIOGRAPHY

[Gra96] P. Gray, editor. User Interfaces for Theorem Provers: An Interna-
tional Workshop, York, 1996. http://www.cs.york.ac.uk/~nam/uit/
proceedings.html.

[Gri81] D. Gries. The Science of Computer Programming. Springer-Verlag, 1981.

[GS96] J.F. Groote and J. Springintveld. Algebraic Verification of a Distributed
Summation Algorithm. Technical Report CS-R9640, CWI, October 1996.

[Gun98] E.L. Gunter. Adding external decision procedures to HOL90 securely.
In J. Grundy and M. Newey, editors, Theorem Proving in Higher Order
Logics (TPHOLs’98), volume 1479 of LNCS, pages 143–152, Canberra,
Australia, 1998. Springer Verlag.

[Haa94] P.J.M. van Haaften. Distributed Optimisation Algorithms for Network
Problems. PhD thesis, University of Utrecht, 1994.

[Hal90] A. Hall. Seven myths of formal methods. IEEE Software, pages 11–19,
September 1990.

[Hal91] R. Hale. Reasoning about software. In M. Archer, J.J. Joyce, K.N.
Levitt, and P.J. Windley, editors, Proceedings of the 1991 International
Workshop on HOL Theorem Proving and its Applications, pages 52–58,
Davis, August 1991. IEEE Computer Society Press.

[Har93a] J. Harrison. A HOL decision procedure for elementary real algebra. In
J.J. Joyce and C.H. Segers, editors, Proceedings of the 6th International
Workshop on Higher Order Logic Theorem Proving and its Applications,
volume 780 of LNCS. Springer-Verlag, August 1993.

[Har93b] J. Harrison. Constructing the real numbers in HOL. In L.J.M. Claesen
and M.J.C. Gordon, editors, Higher Order Logic Theorem Proving and
its Applications (A-20), pages 145–164. Elsevier Science Publications BV
North Holland, IFIP, 1993.

[Har94] J. Harrison. Binary decision diagrams as a HOL derived rule. In T.F.
Melham and J. Camilleri, editors, Proceedings of the 7th International
Workshop on Higher Order Logic Theorem Proving and its Applications,
volume 859 of LNCS. Springer-Verlag, September 1994.

[Har96] J. Harrison. St̊almarck’s Algorithm as a HOL derived rule. In J. von
Wright, J. Grundy, and J. Harrison, editors, Theorem Proving in Higher
Order Logics (TPHOLs’96), volume 1125 of LNCS, pages 221–234, Turku,
Finland, 1996. Springer Verlag.

[HC96] B. Heyd and P. Crégut. A modular coding of UNITY in COQ. In J. von
Wright, J. Grundy, and J. Harrison, editors, Theorem Proving in Higher
Order Logics (TPHOLs’96), volume 1125 of LNCS, pages 251–266, Turku,
Finland, 1996. Springer Verlag.

http://www.cs.york.ac.uk/~nam/uit/proceedings.html
http://www.cs.york.ac.uk/~nam/uit/proceedings.html


BIBLIOGRAPHY 273

[Hes97] W.H. Hesselink. A mechanical proof of Segall’s PIF algorithm. Formal
Aspects of Computing, 9:208–226, 1997.

[HHJ98] U. Hensel, M. Huisman, and H. Jacobs, B. Tews. Reasoning about classes
in object-oriented languages: Logic models and tools. In C. Hankin,
editor, Programming languages and systems, volume 1381 of LNCS, pages
105–121, 1998.

[Hoa69] C.A.R. Hoare. An axiomatic basis for computers programs. Communi-
cations of the ACM, 12:576–583, 1969.

[Hoa72] C.A.R. Hoare. Proof of correctness of data representation. Acta Infor-
matica, (1):271–281, 1972.

[How96] D.J. Howe. Importing mathematics from HOL into Nuprl. In J. von
Wright, J. Grundy, and J. Harrison, editors, Theorem Proving in Higher
Order Logics (TPHOLs’96), volume 1125 of LNCS, pages 267–281, Turku,
Finland, 1996. Springer Verlag.

[Inc95] Random House Inc. Random House Webster’s College Dictionary. 1995.
ISBN 0-679-43886-6.

[Jac91] J. Jacob. The varieties of refinement. In J. M. Morris and R. C. Shaw,
editors, Proceedings of the 4th Refinement Workshop, pages 441–455.
Springer-Verlag, 1991.

[Jon90] B. Jonsson. On decomposing and refining specifications of distributed
systems. In J.W. de Bakker, W.P. de Roever, and G. Rozenberg, edi-
tors, Stepwise Refinement of Distributed Systems: Models, Formalisms,
Correctness, volume 430 of LNCS, pages 361–385. Springer-Verlag, 1990.

[JS93] J.J. Joyce and C.H. Segers. The HOL-Voss system: model-checking inside
a general-purpose theorem-prover. In J.J. Joyce and C.H. Segers, editors,
Proceedings of the 6th International Workshop on Higher Order Logic
Theorem Proving and its Applications, volume 780 of LNCS. Springer-
Verlag, August 1993.

[Kal96] M. Kaltenbach. Interactive Verification Exploiting Program Design
Knowledge: A Model-Checker for UNITY. PhD thesis, The University of
Austin, 1996.

[Kem90] R.A. Kemmerer. Integrating formal methods into the development pro-
cess. IEEE Software, pages 37–50, September 1990.

[Kor91] J. Kornerup. Refinement in UNITY. Technical Report TR-91-18, De-
partment of Computer Sciences, University of Texas at Austin, 1991.

[Lam83] L. Lamport. Specifying concurrent program modules. ACM Transactions
on Programming Languages and Systems, 5(2):190–222, 1983.



274 BIBLIOGRAPHY

[Lam89] L. Lamport. A simple approach to specifying concurrent systems. Com-
munications of the ACM, 32(1):32–45, 1989.

[Lam94] L. Lamport. The Temporal Logic of Actions. ACM Transactions on
Programming Languages and Systems, 16(3):872–923, May 1994.

[Lam96] L. Lamport. Refinement on state-based formalisms. Technical Report 01,
DEC SRC, 1996.

[L̊an94] T. L̊angbacka. A HOL formalization of the temporal logic of actions. In
T.F. Melham and J. Camilleri, editors, Higher Order Theorem Proving
and Its Application, volume 859 of LNCS, pages 332–345. Springer-Verlag,
1994.

[Lap90] J.-C. Laprie. On the assesment of safety-critical software systems. In
12th International Conference on Software Engineering, pages 222–227,
Nice, France, March 1990.

[LC93] J.-Y. Lu and S.-K. Chin. Linking Higher Order Logic to a VLSI CAD
system. In J.J. Joyce and C.H. Segers, editors, Proceedings of the 6th
International Workshop on Higher Order Logic Theorem Proving and its
Applications, volume 780 of LNCS. Springer-Verlag, August 1993.

[Len93] P.J.A Lentfert. Distributed Hierarchical Algorithms. PhD thesis, Univer-
sity of Utrecht, 1993.

[Lev86] N.G. Leveson. Software safety: Why, what, and how. Computing Surveys,
18(2):125–163, June 1986.

[Lev91] N.G. Leveson. Software safety in embedded computer systems. Commu-
nications of the ACM, 34(2):34–46, February 1991.

[Lev95] N.G. Leveson. Safeware: System Safety and Computers. Addison-Wesley
Publishing Compagny, 1995.

[LS84] S.S. Lam and A. U. Shankar. Protocol verification via projections. IEEE
Transactions on Software Engineering, SE-10(4):325–342, 1984.

[LT87] N.A. Lynch and M.R. Tuttle. Hierarchical correctness proofs for dis-
tributed algorithms. In Proceedings of the 6th Annual ACM Symposium
on principles of Distributed Computing, pages 137–151, 1987.

[LT89] N.A. Lynch and M.R. Tuttle. An introduction to input/output automata.
CWI Quarterly, 2(3):219–246, September 1989.

[LT93] N.G. Leveson and C.S. Turner. An investigation of the Therac-25 acci-
dents. IEEE Computer, pages 18–41, July 1993.

[LV95] N.A. Lynch and F.W. Vaandrager. Forward and backward simulations,
I: Untimed systems. Information and Computation, 121(2):214 – 233,
September 1995.



BIBLIOGRAPHY 275

[Lyn96] N.A. Lynch. Distributed Algorithms. Morgan Kaufman Publishers, Inc.,
San Fransisco, California, 1996.

[Mee86] L. Meertens. Algorithmics – towards programming as a mathematical
activity. In J.W. de Bakker, M. Hazewinkel, and J.K. Lenstra, editors,
Proccedings of the CWI symposium on Mathematics and Computer Sci-
ence, volume 1 of CWI monographs, pages 289–334. North-Hollnad, 1986.

[Mee90] L. Meertens. Paramorphisms. Technical Report CS-R9005, CWI, Ams-
terdam, 1990.

[Mel89] T.F. Melham. Automating recursive type definitions in higher order logic.
In P.A. Subrahmanyam and G. Birtwistle, editors, Current Trends in
Hardware Verification and Automated Theorem Proving, pages 341–386.
Springer-Verlag, 1989.

[Mel92] T.F. Melham. The HOL pred sets library, 1992. http://lal.cs.byu.
edu/lal/holdoc/library.html.

[Mer95] N. Merriam, editor. User Interface Design for Theorem Proving Systems:
An International Workshop, Glasgow, 1995. http://www.cs.york.ac.
uk/~nam/uitp95-report/report.html.

[MG90] C. Morgan and P.H.B. Gardiner. Data refinement by calculation. Acta
Informatica, (27):481–503, 1990.

[Mis90] J. Misra. More on strengthening the guard. Notes on UNITY, 19-90,
1990. http://www.cs.utexas.edu/users/psp/notesunity.html.

[Mis94] J. Misra. A logic for concurrent programming. Can be obtained at:
http://www.cs.utexas.edu/users/psp/newunity.html, April 1994.

[Mor88] C. Morgan. The specification statement. ACM Transactions on Program-
ming Languages and Systems, 10(3), 1988.

[Mor89] J.M. Morris. Laws of data refinement. Acta Informatica, (26):287–308,
1989.

[Mor90] C. Morgan. Programming from Specifications. Prentice Hall, 1990.

[Neu95] P.G. Neumann. Computer Related Risks. Addison-Wesley, 1995.

[Nic91] J.E. Nicholls. Domains of application for formal methods. In Z User
Workshop, York 1991, pages 145–156. Springer-Verlag, 1991.

[ORSH95] S. Owre, J. Rushby, N. Shankar, and F. von Henke. Formal verification
for fault-tolerant architectures: Prolegomena to the design of PVS. IEEE
Transactions on Software Engineering, 21(2):107–125, February 1995.

[Pau87] L.C. Paulson. Logic and Computation:Interactive Proof with Cambridge
LCF. Cambridge University Press, 1987.

http://lal.cs.byu.edu/lal/holdoc/library.html
http://lal.cs.byu.edu/lal/holdoc/library.html
http://www.cs.york.ac.uk/~ nam/uitp95-report/report.html
http://www.cs.york.ac.uk/~ nam/uitp95-report/report.html
http://www.cs.utexas.edu/users/psp/notesunity.html
http://www.cs.utexas.edu/users/psp/newunity.html


276 BIBLIOGRAPHY

[Pau94] L.C. Paulson. Isabelle: A Generic Theorem Prover, volume 828 of LNCS.
Springer-Verlag, 1994.

[Pau99] L.C. Paulson. Mechanizing UNITY in Isabelle. Technical Report 467,
Computer Lab, 1999.
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[Thé93] L. Théry. A proof development system for the HOL theorem prover.
In International Workshop on Higher Order Logic and its applications,
Vancouver, 1993.

[Thi98] X. Thirioux. Automatically proving UNITY safety properties with arrays
and quantifiers. In J. Rolim, editor, Parallel and Distributed Processing,
volume 1388 of LNCS, pages 833–843. Springer-Verlag, 1998.

[Tho94a] M. Thomas. A proof of incorrectness using the lp theorem prover:
the editing problem in the Therac-25. High Integrity Systems Journal,
1(1):35–48, 1994.

[Tho94b] M. Thomas. The story of the Therac-25 in lotos. High Integrity Systems
Journal, 1(1):3–15, 1994.

[Udi95] R.T. Udink. Program Refinement in UNITY-like Environments. PhD
thesis, University of Utrecht, 1995.

[UK96] R.T. Udink and J.N. Kok. The RPC-Memory specification problem:
UNITY + Refinement Calculus. In Formal Systems Specification, volume
1169 of LNCS, pages 521–540. 1996.

[Vaa95] F.W. Vaandrager. Verification of a Distributed Summation Algorithm.
Technical Report CS-R9505, CWI, January 1995.

[Vel94] D.J. Velleman. How to Prove it. Cambridge University Press, 1994.

[vW92a] J. von Wright. Data Refinement and the Simulation Method. Reports
on computer science and mathematics Series A, No. 137, Åbo Akademi,
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Samenvatting

In dit proefschrift wordt gekeken naar de toepassing van formele methoden om de
correctheid van gedistribueerde computer systemen te verifiëren.

Gedistribueerde computer systemen zijn opgebouwd uit onderling communicerende
computers die veelal geografisch verspreid liggen. Communicatie tussen de verbonden
computers in deze gedistribueerde systemen kan gaan via het telefoonnet, via glasvezel
kabels of zelfs via de satelliet, en bestaat uit het sturen en ontvangen van berichten.
Het meest bekende voorbeeld van een gedistribueerd computer system is natuurlijk
het internet, maar ook aan de mogelijkheid om wereldwijd “te kunnen pinnen” of
vliegreizen te boeken liggen gedistribueerde systemen ten grondslag. Wat een gedis-
tribueerd systeem precies doet, hangt af van de manier waarop de verbonden com-
puters met elkaar samenwerken en communiceren. Een geheel van regels aangaande
wie, welk bericht, wanneer en waar naartoe mag sturen teneinde een bepaald doel te
bereiken wordt een gedistribueerd algoritme genoemd. Het nadenken en redeneren over
gedistribueerde systemen is veel moeilijker dan over één opzichzelf staande computer.
Dit komt omdat in een gedistribueerd systeem meerdere computers tegelijkertijd actief
zijn (paralellisme), het niet altijd te voorspellen is wat er gaat gebeuren (determin-
isme), en de afzonderlijke computers in het systeem geen notie hebben van de globale
toestand van het systeem. Hierdoor is het moeilijk om gedistribueerde algoritmen te
ontwerpen en te verifiëren of ze daadwerkelijk doen waarvoor ze bestemd zijn (dus of
ze correct zijn met betrekking tot het bepaalde doel waarvoor ze ontworpen zijn).

Om dit probleem het hoofd te bieden wordt al sinds eind jaren 70, intensief onder-
zoek gedaan naar formele methoden: wiskundige technieken om het gedrag van syste-
men te beschijven (formele specificatie) en eigenschappen ervan te bewijzen (formele
verificatie). Formele methoden kunnen op 3 niveaus worden toegepast. Welk niveau
moet worden toegepast hangt af van de gewenste betrouwbaarheid van het systeem
dat ontworpen wordt. Het eerste niveau bestaat enkel uit het schrijven van een formele
specificatie waarin het gedrag van het systeem ondubbelzinning wordt vastgelegd. De
taal waarin zo’n formele specificatie wordt geschreven heet een specificatie taal. De
specificatie taal die gebruikt wordt in dit proefschrift heet UNITY, en is speciaal
ontworpen voor het beschrijven van en redeneren over gedistribueerde systemen. Het
tweede niveau houdt in dat naast het schrijven van een formele specificatie ook be-
wezen wordt dat bepaalde gewenste eigenschappen aanwezig zijn en dat ongewenste
eigenschappen afwezig zijn. De bewijzen op dit niveau gebeuren veelal op papier
en kunnen formeel of informeel zijn. Het laatste, en meest rigoureuze, niveau van
het gebruik van formele methoden is als alle bewijzen gemaakt op het vorige niveau
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worden gechecked met behulp van een computer programma. Deze techniek noemen
we mechanische verificatie en het computer programma dat gebruikt wordt voor de
verificatie heet een stelling bewijzer. Dit laatste niveau van formele methoden geeft
de meeste betrouwbaarheid aangezien de fouten die eventueel nog gemaakt kunnen
worden bij het bewijzen op papier nu van de baan zijn. In dit proefschrift hebben wij
dit laatste niveau toegepast om te redeneren over de correctheid van gedistribueerde
algoritmen. De stelling bewijzer die gebruikt is om de resultaten in dit proefschrift te
bewijzen heet HOL, wat een acroniem is voor Hogere Orde Logica. Nu kan iemand
zich afvragen: wie heeft de correctheid van deze stelling bewijzer bewezen en wie
garandeert mij dat datgene dat bewezen is met een stelling bewijzer ook daadwerke-
lijk correct is? Het hele HOL systeem is gebaseerd op 5 axiomas (een niet bewezen,
maar als grondslag aanvaarde waarheid) en 8 bewijsregels (regels waarmee uit al bek-
ende waarheden, nieuwe waarheden kunnen worden geconstrueerd). HOL neemt aan
dat deze axiomas en bewijsregels waar zijn, en alle andere dingen die bewezen kunnen
worden met HOL volgen enkel en alleen uit de waarheid van deze 13 aannamen. Om-
dat het hier gaat over axiomas en bewijsregels die al vele honderden jaren bestudeerd
zijn en waarover consensus aangaande hun zinvolheid en waarheid is bereikt, kunnen
we ervan uitgaan dat HOL betrouwbaar is. Het gebruik van stelling bewijzers tij-
dens de verificatie van gedistribueerde algoritmen verkleint de kans op fouten in deze
algoritmen dus aanzienlijk, maar er hangt een prijskaartje aan. Het gebruiken van
stelling bewijzers is moeilijk en kost veel tijd; tot nu toe is het effectief gebruiken van
stelling bewijzers slechts voorbehouden aan een handjevol specialisten en het is dus
ook begrijpelijk dat het bedrijfsleven twijfelt aan de economische haalbaarheid van
het toepassen van stelling bewijzers tijdens het ontwikkelen van programmatuur.

Samenvattend kijkt dit proefschrift naar de toepassing van mechanische verifi-
catie om de correctheid van gedistribueerde algoritmen te verifiëren. Hierbij komen
we twee moeilijke en tijdrovende activiteiten tegen: het gebruik van stelling bewijzers
enerzijds en het redeneren en nadenken over gedistribueerde algoritmen anderzijds.
Een ander doel van ons onderzoek is dan ook om te kijken naar wat het meest com-
plex en tijdrovend is, en wat daaraan gedaan kan worden. We kijken hierbij vooral
naar gedistribueerde algoritmen. Het moge duidelijk zijn dat de complexiteit die
inherent is aan een of ander gedistribueerd algoritme niet gereduceerd kan worden,
en dat een bepaalde hoeveelheid tijd nodig zal zijn om zijn correctheid te bewijzen.
Het is echter zo dat onnodige complexiteit gëıntroduceerd kan worden door slechte
representaties van een algoritmen, ongestructureerde en slecht gemotiveerde correct-
sheidsbewijzen, en onvoldoende analyse om classificaties van algoritmen te ontdekken.
In dit proefschrift laten wij zien dat de representatie van gedistribueerde algoritmen,
het redeneren en nadenken over deze algoritmen positief kan bëınvloeden. We laten
zien dat betere een representatie:

• de tijd en moeite die nodig is om het gedrag en de functionaliteit van een
gedistribueerd algoritme te begrijpen, aanzienlijk kan verminderen

• het makkelijker maakt om overeenkomsten en verschillen met andere algoritmen
te zien

• de mogelijkheid om nieuwe algoritmen te bedenken vergroot
• de complexiteit van correctsheids bewijzen aanzienlijk reduceert

Om deze argumenten te staven bekijken we een klasse van algoritmen die wij gedis-
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tribueerde hylomorphismen noemen. Gedistribueerde hylomorphismen zijn algoritmen
die gebruikt kunnen worden om globale eigenschappen van een gedistribueerd systeem
te bepalen, of om alle aangesloten computers in het systeem snel van een bepaalde
gebeurtenis op de hoogte te stellen. Verschillende gedistribueerde hylomorphismen die
we in de literatuur tegen zijn gekomen staan bekent onder de namen ECHO, Tarry
and DFS. We verbeteren de representaties van deze algoritmen op zo’n manier dat de
overeenkomsten en verschillen tussen de drie algoritmen meteen duidelijk worden uit
de representatie. Het wordt hierdoor mogelijk gemaakt om over de algoritmen samen
te redeneren, in plaats van over elk algoritme apart; bovendien heeft het ons in staat
gesteld een nieuw gedistribueerd hylomorphisme te bedenken dat we PLUM1 hebben
genoemd. Uiteindelijk bewijzen we de correctheid van al deze gedistribueerde algo-
ritmen, en laten zien dat de verbeterde representaties hebben geleid tot een efficiënte
gestructureerde bewijsstrategie.

1Plum betekent “pruim” in het engels, en de naam is dan ook tot stand gekomen onder het
drinken van enkele flessen pruimenwijn tijdens de Marktoberdorf Summerschool van 1996.
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