
25TH INTERNATIONAL CONFERENCE ON INFORMATION SYSTEMS DEVELOPMENT (ISD2016 POLAND)

42

A Model-level Mutation Tool to Support the Assessment of the Test
Case Quality

Maria Fernanda Granda1 fernanda.granda@ucuenca.edu.ec / fgranda@pros.upv.es
University of Cuenca/ Computer Science Department
Cuenca, Ecuador

Nelly Condori-Fernández n.condori-fernandez@vu.nl
Vrije Universiteit van Amsterdam/ Computer Science Department
Amsterdam, The Netherlands

Tanja E. J. Vos tvos@pros.upv.es
1Universitat Politècnica de València/ PROS Research Center
Valencia, Spain

Oscar Pastor opastor@pros.upv.es
Universitat Politècnica de València/ PROS Research Center
Valencia, Spain

Abstract
Although mutation testing is a well-known technique for assessing the quality of tests, there is
not a lot of support available for model-level mutation analysis. It is also considered to be
expensive due to: (i) the large number of mutants generated; ii) the time-consuming activity of
determining equivalent mutants; and (iii) the mutant execution time. It should also be
remembered that real software artefacts of appropriate size including real faults are hard to find
and prepare appropriately. In this paper we propose a mutation tool to generate valid First Order
Mutants (FOM) for Conceptual Schemas (CS) based on UML Class Diagrams and evaluate its
effectiveness and efficiency in generating valid and non-equivalent mutants. Our main findings
were: 1) FOM mutation operators can be automated to avoiding non-valid mutants (49.1%). 2)
Fewer equivalent mutants were generated (7.2%) and 74.3% were reduced by analysing the CS
static structure in six subject CSs.
Keywords: Mutation Tool, Model-level Mutation, Class Diagram Mutants, Test Cases Quality.

1. Introduction
In Model-Driven Engineering the models or conceptual schemas (CS) are the primary artefacts
in the software development process, and efforts are focused on their creation, testing and
evolution at different levels of abstraction. If a model has defects, these are passed on to the
following stages of the Software Development Life Cycle, including coding. The quality of a
CS can be assessed by detecting its defects during execution. The best test suite is the one that
has the best chance of finding defects, but how we do know how good a test suite is? Mutation
testing is one of the ways of assessing the quality of a test suite. This method injects artificial
faults or changes into a CS (mutant generation) and checks whether a test suite is “good enough”
to detect these artificial faults. The artificial faults can be created automatically, using a set of
mutation operators (MO) to change (i.e. mutate) some parts of the software artefact. Mutants
can be classified into two types: First Order Mutants (FOM) and Higher Order Mutants (HOM)
[11]. FOMs are generated by applying mutation operators only once. HOMs are generated by
applying mutation operators more than once [10]. However, approaches that employ mutation
testing at higher levels of abstraction, especially on CS, are not common [10].

ISD2016 POLAND

43

One problem in the design of tests to assess test case quality is that real software artefacts of
appropriate size including real faults are hard to find and hard to prepare appropriately (for
instance, by preparing correct and faulty versions) [1]. Even when software artefacts with real
faults are available, these faults are not usually numerous enough to allow the experimental
results to achieve statistical significance [1]. Thus, mutation testing is usually considered
expensive due to: (i) the large number of mutants generated; (ii) the time-consuming task of
determining equivalent mutants (i.e. functionally identical to the original artefact although
syntactically different); and (iii) the time required to compile and execute the mutants [20]. This
means mutation testing of real-world software would be extremely difficult without a reliable,
fast and automated tool that: (a) generates mutants, (b) runs the mutants against a test suite and
(c) reports the mutation score of the test suite.
This paper describes a mutation tool that generates FOMs for CS based on UML Class Diagram
(CD) by using previously defined mutation operators [5]. The main usefulness of the mutation
tool is to support a well-defined, fault-injecting process to assess the test case quality at the CS
level.
The novel contributions of this paper are: 1) the MtUML prototype mutation tool designed to
generate FOMs for UML CD-based CS, eliciting its benefits and weaknesses. 2) An evaluation
of the effectiveness and efficiency of the mutation tool to generate valid and non-equivalent
FOMs of UML CD-based CS by using six subject CSs.
The rest of this paper is organized as follows. Section 2 describes the background to the study
and Section 3 describes the mutation tool itself. The empirical evaluation is described in Section
4. Section 5 presents the results of the evaluation by applying 18 mutation operators to six CSs
and a discussion on effectiveness and efficiency of the proposed mutation tool. Section 6
describes possible threats to validity. Section 7 summarizes our conclusions and outlines future
work.

2. Background

2.1. Executable Conceptual Schema based on UML Class Diagram
In this paper, defects will be introduced by deliberately changing a UML CD-based CS,
resulting in wrong behaviour and possibly causing a failure. As the CS of a system should
describe its structure and behaviour (constraints), we represent it by a UML-based (CD). A
class diagram is the UML’s main building block and shows elements of the system at an abstract
level (e.g. class, association class), their properties (owned attributes), relationships (e.g.
association and generalization) and operations. In a UML, operations are specified by defining
pre- and post-conditions (i.e. constraints) [15]. In this paper we evaluate mutation operators that
can inject defects into the following elements: class, attribute, operations, parameters,
associations and constraints. In this context, an executable UML model is one with a
behavioural specification detailed enough to effectively be run as a program. There are several
model execution tools and environments7. However, each tool defines its own semantics for
model execution, often including a proprietary action language, and models developed in one
tool could not be interchanged with or interoperated with models developed in another tool.
In this work, we use the action language adopted as a standard by OMG8, which is known as
the Action Language for Foundational UML, or Alf [13], which is basically a textual notation
for UML behaviours that can be attached to a UML model at any point where there is UML
behaviour, e.g. the method of an operation or the classifier behaviour of a class. As Alf notation
includes basic structural modelling constructs, it is also possible to do entire models textually
in Alf. Semantically, Alf maps the model to the Foundational UML (fUML [14]) subset, after
which fUML provides the virtual machine for the execution of the Alf language.

7 http://modeling-languages.com/list-of-executable-uml-tools/
8 http://www.omg.org/

GRANDA ET AL. A MODEL-LEVEL MUTATION TOOL TO SUPPORT...

44

2.2. Mutant Generation Time Estimation Model

The usual process for obtaining values of time on task data involves recruiting users and then
performing tests with them in a lab. This procedure, while providing a wealth of informative
data can be expensive and time-consuming [16].
Since one of the goals of this study was to analyse the time saved in the mutant generation
process by using the proposed tool, we required a method that measured experienced-user task
time in order to estimate the time required to generate each mutant type analysed. The most
familiar of these cognitive modelling techniques is GOMS (Goals, Operators, Methods and
Selection Rules), which has been documented in the still highly referenced text “The
Psychology of Human Computer Interaction”, by Card, Moran and Newell (1983) [2]. GOMS
represents a family of techniques, the most familiar of which is Keystroke-Level Modelling [2].
We selected the Keystroke-Level Model for this study because it has revealed remarkably
precise prediction results in several projects such as [8] and [18]. The Keystroke-Level Model
predicts the task execution time of a specified interface and task scenario. Basically, it requires
a sequence of keystroke-level actions the user must perform to accomplish a task and then adds
up the total time required for the actions. The actions are termed at keystroke level if they are
actions like pressing keys, moving the mouse, pressing buttons, and so on [12]. The values used
for this technique are described in detail in Section 4.2.

3. MutUML: A Mutation Tool
The most critical activity in mutation testing is the suitable design of mutation operators so that
they reflect typical defects of the artefact under test. In a previous work [7], we presented a
defects classification at model level and in [5] described the process of selection of the 18
mutation operators from a list of 50 for generating First Order Mutants to UML CD-based CS.
We developed a mutation tool (https://staq.dsic.upv.es/webstaq/mutuml.html.) for generating
first order mutants by using a set of 18 previously defined mutation operators [5], which specify
the changes and restrictions required for each mutation operator (see Table 1).

Table 1. Mutation Operators for FOMs taken from [5]

The tool functionality is separated into the following three processes:
 Calculating Mutants. Testers can select the CS source file (.uml) to calculate the FOMs and

also the mutation operators to apply (by default all mutation operators are selected). On
pressing the “Calculate Mutants” button, the tool calculates the mutants by applying the
mutation operators. The information for each mutant is shown in the “Mutant Description
Table” and can be exported as a report by pressing the “Export Report to Excel” button.

 Generating Mutants. The testers/designers can create the mutants required by selecting
from the previously calculated mutant list (by default all mutants are selected) and pressing

Code Mutation Operator Description
1 UPA2 Adds an extraneous Parameter to an Operation
2 WCO1 Changes the constraint by deleting the references to a class Attribute
3 WCO3 Change the constraint by deleting the calls to specific operation.
4 WCO4 Changes an arithmetic operator for another and supports binary operators: +, -,*,/
5 WCO5 Changes the constraint by adding the conditional operator “not”
6 WCO6 Changes a conditional operator for another and supports operators: or, and
7 WCO7 Changes the constraint by deleting the conditional operator “not”
8 WCO8 Changes a relational operator for another operators: <, <=, >, >=, ==, !=
9 WCO9 Changes a constraint by deleting a unary arithmetic operator (-).
10 WAS1 Interchange the members (memberEnd) of an Association.
11 WAS2 Changes the association type (i.e. normal, composite).
12 WAS3 Changes the memberEnd multiplicity of an Association (i.e. *-*, 0..1-0..1, *-0..1)
13 WCL1 Changes visibility kind of the Class (i.e. private)
14 WOP2 Changes the visibility kind of an operation.
15 WPA Changes the Parameter data type (i.e. String, Integer, Boolean, Date, Real).
16 MCO Deletes a constraint (i.e. pre-condition, post-condition constraint, body constraint)
17 MAS Deletes an Association.
18 MPA Deletes a Parameter from an Operation.

ISD2016 POLAND

45

the “Generate the Mutants” button to generate them. The tool generates the CS mutants
(.uml) from the CS source file (.uml).

 Parsing Mutants. After the mutants have been generated they need to be analysed by the
parser. This analysis is required before the mutation testing process and also to
automatically classify the mutants as valid or non-valid. Each mutant is transformed into
an executable format by using Alf language. The Alf parser produces an output with the
analysis results of each mutant. To understand how MtUML works we refer to the partial
view of a CS in Fig. 1. Five mutation operators have been applied to the CS. Four operators
generate valid FOM (i.e. b) UPA2, c) WAS3, d) WCO3, e) MCO). However, applying the
MAS operator to the WhiteCells association generates a non-valid FOM because there is a
constraint (i.e. MovieUnique) that is related with the association. Simply deleting the
association would result in a Dangling constraint, which evidently is not desirable.
Therefore, we need to add more steps to the operator (going from FOM to HOM). The
HOM should delete the association together with the respective constraint. This way, the
mutant will not be detected by the parser and can generate a valid mutant for testing.

Fig. 1. Excerpt of a UML CD-based CS and the application of five mutation operators, adapted

from [19]

4. Empirical Evaluation
This section describes the goal, the research questions, the metrics, the evaluation context and
procedure followed for the evaluation.

4.1. Goal
In accordance with the Goal/Question/Metric Paradigm [17] the goal of our empirical study is
as follows: To analyse the mutant generation strategy of the Mutation tool, for the purpose of
carrying out an evaluation with respect to the effectiveness and efficiency in generating valid
First Order Mutants to UML CD-based CS from the viewpoint of the researchers.

4.2. Research Questions and Metrics
By means of this study, we aim to be able to respond to the following research questions (RQ):

GRANDA ET AL. A MODEL-LEVEL MUTATION TOOL TO SUPPORT...

46

RQ1: How effective are the mutation operators implemented in a mutation tool for
generating FOMs of Conceptual Schema? As this RQ is focused on the generation
strategy, the following research questions and metrics are derived from it:

1) RQ1.1. For each defined mutation operator, what is the percentage of valid mutants
generated by the mutation tool? The metric M1 for RQ1.1 is the percentage calculated by
dividing the number of valid mutants generated by the tool by the total number of mutants
that can be generated from the CS elements. The number of mutants that can be generated
determines the cost of creating and executing them and also the cost of deriving test cases
that kill them. The number of non-valid mutants has an impact on the cost of identifying
and discarding them. The mutation tool can indicate whether a mutant is valid or not
according to the restrictions defined for each mutation operator.

(ܱܯ)1ܯ =
(ܱܯ)ܯ
(ܱܯ)ீܯ (1) %100 ݔ

2) RQ1.2. For each defined MO, what percentage of parsed mutants is equivalent? The first
metric M2 for RQ1.2 is the percentage calculated by dividing the number of valid mutants
that are equivalent by the number of valid mutants for mutation operator. The number of
equivalent mutants has an impact on the cost of performing mutation testing because a tester
needs to execute the test cases against the equivalent mutants to identify and discard them.

(ܱܯ)2ܯ =
(ܱܯ)ாܯ
(ܱܯ)ܯ (2) %100 ݔ

The second metric M3 for RQ1.2 is the percentage calculated by dividing the number of
equivalent mutants that can be eliminated using the proposed tool, and total number of
equivalent mutants generated by an operator. The cost of performing mutation testing of
equivalent mutants can be reduced by the tool by automating an analysis of the subject CS
to identify them.

(ܱܯ)3ܯ =
ݐݏ݁ܶܵܥ ݕܾ ݀݁ݐܿ݁ݐ݁݀ (ܱܯ)ாܯ

(ܱܯ)ாܯ (3) %100 ݔ

RQ2: To what extent is the generation time reduced by using the tool?

The metric M4 for this RQ is the percentage of time saved by the mutation tool when generating
mutants (FOMs). The Manual Generation time is measured by the generation time of valid and
non-valid mutants for the subject CS. While the Tool Generation time is calculated by adding
the times required to calculate, generate and parse the mutants (FOMs) when using the
MtUML tool. This metric can be measured by applying the following formula:

(ܵܥ)4ܯ =
(ܵܥ)݁݉݅ܶ ݊݅ݐܽݎ݁݊݁ܩ ݈ܽݑ݊ܽܯ − (ܵܥ)݁݉݅ܶ ݊݅ݐܽݎ݁݊݁ܩ ݈ܶ

(ܵܥ)݁݉݅ܶ ݊݅ݐܽݎ݁݊݁ܩ ݈ܽݑ݊ܽܯ
 (4) %100 ݔ

In order to predict the times for manual generation, the following step-by-step description
adapted from Kieras [12] was used to apply the Keystroke-Level Model method in this work.
1) Choose a representative task scenario for each mutation operator. The general scenario

required to create manually a CS mutant is: (a) Task1 -open the CS source file, (b) Task2
-duplicate the CS source file, (c) Task3 -select the CS element, (d) Task4 -apply the
mutation operator, this task is particular for each mutation operator (see Table 3), and (e)
Task 5 -save the mutant and close it.

2) List the keystroke-level actions involved in doing each task with the execution times. The
following are some of the standard keystroke-level actions and estimated times for each
operator [12].

 M: Mental operation: User decides or reflects where to click (1.2 sec)
 H: Home: User moves hand between keyboard and mouse (0.4 sec)
 P: Point: User point with the mouse to a target on the screen (1.1. sec)
 K: Set: User clicks on the target (0.28 sec). The time considers the average non-

secretarial typist (40 wpm –words per minute) [16].
 B: Button: User clicks on the button (0.1 sec).
 BB: User pushes and releases the mouse button rapidly, as in a selection click (0.2 sec).

ISD2016 POLAND

47

As we assumed waiting time to be negligible we did not deal with any physical operators for it.
3) List and calculate time for each composite action. Using the granular steps from

Keystroke-Level Model, a composite action is clicking on a menu option of the UML
diagram editor such as File/Open, Save and Save as, so the four steps are replaced with
the composite action: Click on Option. The time to complete this action is modelled in
[22]: M (1.2) + P (1.1) + H (0.4) + B (0.1) = approximately 2.8 seconds. Using this method,
we defined a small number of composite actions to account for almost all the above five
tasks in the 18 mutation operators. The composite actions used were as follows:

 CA1: Click an Option/Button (MPHB = 2.8 sec).
 CA2: Double click (MPHBB = 2.9 sec).
 CA3: Typing Mutant name in a Text Field of the Dialog box. The mutant name is

formed by the code of mutant (3 uppercase letters) + an underscore (“_”) + a sequential
number formed by 3 digits + the file extension “.umlclass”. (18K= 5.32 sec). Pressing
the SHIFT key counts as a separate keystroke.

 CA4: Pull-Down List (3.04) (time taken from [16]).
 CA5: Scrolling (3.96 sec) (time taken from [16]).

4) Estimate the time to complete all scenarios for each mutation operator. For this study we
assumed that the person creating the mutants was skilled in: (a) modelling UML CD-based
CS, (b) using the UML CD editor (e.g. UML2 tool), and (c) applying the different 18
mutation operators. It was also assumed that the FOMs list had been calculated previously,
the UML CD editor had been loaded and active and finally that the tasks were error-free.
The Keystroke-Level Model thus addressed only a single aspect of task performance and
did not consider other dimensions, such as error-free execution, concentration, fatigue and
so on [2]. Using the defined composite action times, the times for each task were calculated
(see Tables 7 and 8 in Appendix A).

Table 7 shows the times in seconds estimated by the method for tasks common (i.e. Tasks 1, 2,
3, and 5) to all mutation operators. Table 8 shows the sequence of composite actions required
for each mutation operator for Task 4 and the time predicted by Keystroke-Level Model for this
task. The time for each mutation operator was estimated in the last column of Table 8 by using
the times of the respective tasks for each operator (Task 1 – Task 5).

4.3. Evaluation Context

Subject CSs

Six subject CSs were used in the study (see elements in Table 2). These contained a variety of
possible characteristics present in UML CD-based CS, including classes, relationships (i.e.
association, composite aggregation, and generalization) and different types of constraints (i.e.
pre-condition, post-condition and body condition). Some were found in the literature (i.e. [4],
[19] and [3]) and others were selected because they contained the CS elements required to inject
the faults.

Table 2. Elements of the subject Conceptual Schemas
Element MT SG ER OCR SS PA
Classes 6 11 7 10 9 15
Attributes 26 26 36 61 44 43
Derived Attributes 0 6 6 1 1 33
Operations 13 19 24 16 32 30
Parameters 43 48 75 77 91 82
Associations 5 6 8 10 9 19
Derived Associations 0 2 0 0 0 0
Composite Aggregations 0 3 0 0 0 0
Constraints 9 19 21 14 12 45
Generalizations 0 4 0 3 0 0

A brief description of each CS is as follows:

GRANDA ET AL. A MODEL-LEVEL MUTATION TOOL TO SUPPORT...

48

1. The Medical Treatment (MT) CS defines part of the CS (of a Medical Treatment business
process) of a fictional hospital named University Hospital Santiago Grisolía, developed by
España et al. [4].

2. The Sudoku Game (SG) CS was developed by Tort and Olivé [19] as an object-oriented
CS of the Sudoku Game system and this CS defines the functionality for managing different
users, who play with Sudokus and generating new games.

3. The Expense Report (ER) CS defines the functionality of an information system to manage
the expense report life cycle of a business and deals with several entities such as
departments, employees, projects and expense types.

4. The Online Conference Review (OCR) CS, which is based on the description of the
CyberChair System, defines the functionality of an information system to deal with
members (committee chair and program committee) of a conference, as well as authors that
submit papers to a conference to be evaluated for acceptance.

5. The Super Stationery (SS) CS defines the information system of a company that provides
stationery and office material to its clients. This CS was developed by España et al. [3].

6. The Photography Agency (PA) CS defines the information system that manages
photographers and their photographic reports for distribution to newspaper publishers.

Tools

In this paper one of the aims is to predict the efficiency of the mutation tool in generating valid
and non-equivalent mutants in a UML CD editor. The Keystroke Level Model (KLM)
Calculator (http://courses. csail.mit.edu/ 6.831/2009/ handouts/ ac18-predictive- evaluation/
klm.shtml) is used for calculating the predictions of task execution times in the UML CD editor
from defined scenarios for applying the different mutation operators. This choice is motivated
by the large number of publications in the Computer Human Interaction environment using
KLM in a variety of emerging application domains [9].
On the other hand, there is no literature available on tools with both integrated functionality (i)
the automated generation of test cases and (ii) tests execution for Conceptual Schemas.
Therefore, we used our CoSTest CS testing tool (https://staq.dsic.upv.es/webstaq/costest.html)
for this work. This tool generates test cases by applying a Model-Driven approach [6]. The test
cases use assertions on the return values of the methods and compare them with the post-
conditions. We performed the following steps to use the CoSTest tool with UML CD-based
CS:

 For each CS, we set the CS testing tool to generate the test cases. We provided the CS
testing tool with a requirements model and a set of input values suitable for the subject
CS, after which the tool generated the test suite.

 Since a CS is not designed for the CS testing tool, the tool generates an executable CS
by applying a transformation from UML to the Alf language.

 The test cases generated by the tool were executed against the CS under test by using
the virtual machine for the execution of the Alf language.

A full description of the testing tool is beyond the scope of the present paper.
Finally, while there are tools that support manipulation of UML-based Conceptual Schemas
such as Papyrus (http://www.eclipse.org/papyrus/) and UML2 Tools
(http://wiki.eclipse.org/MDT-UML2Tools). The UML2 tool is an Eclipse Modelling
Framework-based implementation, which is integrated into the tool used for modelling the
requirements used as input in the CoSTest tool. For this reason we selected this tool for
manipulating UML models.

4.4. Procedure

With the aim of finding empirical evidence to answer the aforementioned RQs, we divided our
study into two parts:
The first evaluation was performed to answer RQ1 and partially answer RQ2. In the first
evaluation we generated mutants for each mutation operator from the subject CS, then identified

ISD2016 POLAND

49

non-valid mutants by applying the MO restrictions and provided suggestions on how to reduce
the percentage of equivalent mutants. These results are given in Section 5.1.
The second evaluation was designed to answer RQ2. For this we derived a reliable way to
estimate time-on task by using the metric defined in Section 4.2 and the tool summarized in
Section 4.3. The generation time savings when using the tool for each subject are given in
Section 5.2.

5. Results Analysis

5.1. Effectiveness: Mutant Generation from FOMs Mutation Operators
Table 3 summarizes the results of generating and parsing the mutants for the subject CS by
using the mutation tool. For each mutation operator in Table 3 we show the number of (valid
and non-valid) possible mutants (MP) that can be generated from the CS elements, the number
of mutants generated by the tool (MG) for each of the subject CS, as well as the total number
of possible generated mutants and the total number of mutants generated by the tool for all CS.
Column M1 shows the percentage of valid mutants generated by the tool from all CS. The
highest percentage of M1 (100%) was achieved by implementing the rules and restrictions of
the FMOs. It can be seen that the total number of non-valid mutants (1039 or 49.1%) is lower
than the valid mutants (1079 or 50.9%). The last cell of the last column (C%) in Table 3 shows
the percentage of valid mutants for each mutation by applying the restrictions of the FOMs for
all six subject CSs.

Table 3. Generated and Valid Mutants using mutation tool
CS

MO

MT SG ER OCR SS PA All
MP MG MP MG MP MG MP MG MP MG MP MG MP MG M1

(%)
C

(%)
UPA2 13 13 19 19 24 24 16 16 32 32 30 30 134 134 100 100.0
WCO1 0 N/A 7 7 9 9 1 1 3 3 33 33 53 53 100 100.0
WCO3 13 0 19 0 29 5 16 0 34 2 43 13 154 20 100 13.0
WCO4 0 N/A 15 15 8 8 0 N/A 2 2 26 26 51 51 100 100.0
WCO5 0 N/A 11 11 11 11 6 6 2 2 5 5 35 35 100 100.0
WCO6 0 N/A 12 12 2 2 5 5 3 3 4 4 26 26 100 100.0
WCO7 0 N/A 1 1 0 N/A 0 N/A 0 N/A 0 N/A 1 1 100 100.0
WCO8 6 6 47 47 21 21 26 26 13 13 34 34 147 147 100 100.0
WCO9 0 N/A 1 1 0 N/A 0 N/A 0 N/A 0 N/A 1 1 100 100.0
WAS1 5 4 11 0 8 0 10 7 9 6 19 5 62 22 100 35.5
WAS2 5 5 11 11 8 8 10 10 9 9 19 19 62 62 100 100.0
WAS3 15 12 33 0 24 0 30 21 27 18 57 15 186 66 100 35.5
WCL1 6 6 11 11 7 7 10 10 9 9 15 15 58 58 100 100.0
WOP2 13 13 19 19 24 24 16 16 32 32 30 30 134 134 100 100.0
WPA 43 9 48 9 75 17 77 3 91 26 82 12 416 76 100 18.3
MCO 9 9 19 11 21 15 14 13 12 11 45 12 120 71 100 59.2
MAS 5 4 11 0 8 0 10 7 9 6 19 5 62 22 100 35.5
MPA 43 10 48 11 75 23 77 6 91 32 82 18 416 101 100 24.0
All 176 91 343 185 354 174 324 147 378 206 543 276 2118 1079 100 50.9

We manually analysed the mutants to determine whether they were equivalent (i.e. the CS
mutant produces the same output as the original CS as if it had no faults). The analysed output
is produced by the CS testing tool. An example of an equivalent mutant is shown in Fig. 2,
where the mutation is not detected by the CS testing tool.

Fig. 2. Excerpt of a Constraint mutated by WCO8 operator

Table 4 shows the results of analysing equivalent mutants generated in the six CS. For each CS,
the table shows the number of equivalent mutants and the percentage of equivalent mutants out
of the valid mutants generated by each operator. For example, the first row in Table 4 shows
that operator WCO4 had 2 equivalent mutants in the Sudoku CS. These contribute about 13.3%
of the 15 valid mutants that the operator has generated. Column M2 in Table 4 shows the
percentage of equivalent mutants of the total number of valid mutants for each operator. The

Context WHITE_CELL inv property_current_value_derivation:
// Original Constraint with Relational Operator "=="
this.current_value=this.moves->size()==0?-1:this.current_value= this.moves->last().value;
// Mutant Constraint with Relational Operator "<="
this.current_value=this.moves->size()<=0?-1:this.current_value= this.moves->last().value;

GRANDA ET AL. A MODEL-LEVEL MUTATION TOOL TO SUPPORT...

50

last column in Tables 4 shows the percentage of equivalent mutants generated by each operator
out of the total number of equivalent mutants. For example, in the first row of Table 4, the
WCO4 operator generated 2 equivalent mutants out of the 78 equivalent mutants that the
mutation tool generated in all the CS. It therefore, contributed about 2.6% of the total number
of equivalent mutants. The last column in the table shows that most of the equivalent mutants
were generated by the WOP2 operator with 74.3% of the total number of equivalent mutants.

Table 4. Number and percentage of equivalent mutants generated using the mutation tool
CS

MO
MT SG ER OCR SS PA All

ME % ME % ME % ME % ME % ME % ME M2(%) C(%) M3 %
WCO4 2 13.3 2 3.9 2.6 0
WCO6 1 8.3 1 33.3 2 7.7 2.6 0
WCO8 6 12.8 1 4.8 3 11.5 6 17.6 16 10.9 20.5 0
WOP2 6 46.2 11 57.9 7 29.2 10 62.5 9 28.1 15 50.0 58 43.3 74.3 74.3
All 6 6.6 20 10.8 8 4.6 13 8.8 10 4.9 21 7.6 78 7.2 100.0 74.3

We inspected the equivalent mutants to determine why the mutants generated cannot be
detected. The reason is that the WOP2 operator (changes the operation visibility) when it is
applied on a constructor operation, only affects the access inherited by child classes (a private
constructor of the super class is not inheritable). Therefore, it is impossible to detect this
mutation operator when the operation is executed in the test cases. A restriction in the rule of
the WOP2 mutation operator should be included in the tool to avoid generating this type of
mutant. There are other equivalent mutants such as WCO4, WCO6 and WCO8, which can only
be identified by inspecting the mutants. The mutation tool cannot avoid producing them.
However, by including the above-described implementation restriction for operator WOP2, we
see that 74.3% (Metric M3) of the equivalent mutants generated by the mutation tool can be
eliminated.

5.2. Efficiency: Generation Time Reduction by Using the Mutation tool

We estimated the time of manual generation of valid and non-valid mutants by using the
calculated times for each mutation operator in Section 4.2 (see Table 3).
Table 5 summarizes the times obtained for each mutation operator in each subject CS by
generating valid first order mutants. The results show that the subject MT has the lowest
mutation time (3661.2 seconds) and subject PA the highest (12516.2 seconds). The last column
in Table 5 shows that most time is required to create mutants by using the WCO8 mutation
operator (6894.3 seconds), and the shortest time is required to create the mutants by using the
WCO7 and WCO9 operators (46.1 seconds). These results are as expected, because these
operators generated the highest and lowest values in the number of valid mutants in the six CSs.
Some fields in Table 5 are empty because the different subject CS had not the required elements
by these mutation operators.

Table 5. Reduced Time in Generating Valid Mutant by Using the Mutation tool

MO MT
(sec)

SG (sec) ER (sec) OCR
(sec)

SS (sec) PA (sec) All (sec)

UPA2 520.0 760.0 960.0 640.0 1280.0 1200.0 5360.0
WCO1 413.3 531.4 59.0 177.1 1948.3 3129.1
WCO3 1018.2 391.6 156.6 1018.2 1566.4
WCO4 695.1 370.7 92.7 1204.8 2363.3
WCO5 475.9 475.9 259.6 86.5 216.3 1514.1
WCO6 596.4 99.4 248.5 149.1 198.8 1292.2
WCO7 46.1 46.1
WCO8 281.4 2204.3 984.9 1219.4 609.7 1594.6 6894.3
WCO9 46.1 46.1
WAS1 185.0 323.8 277.6 231.3 1017.7
WAS2 188.1 413.8 301.0 376.2 338.6 714.8 2332.4
WAS3 562.8 984.9 844.2 703.5 3095.4

ISD2016 POLAND

51

WCL1 232.7 426.6 271.5 387.8 349.0 581.7 2249.2
WOP2 504.1 736.8 930.7 620.5 1241.0 1163.4 5196.5
WPA 447.7 447.7 845.6 149.2 1293.2 596.9 3780.2
MCO 263.3 321.9 438.9 380.4 321.9 351.1 2077.5
MAS 117.0 204.8 175.6 146.3 643.7
MPA 4359.0 394.9 825.7 215.4 1148.8 646.2 3590.0
All 3661.2 7978.7 7427.2 6069.5 8541.5 12516.2 46194.3

Fig. 3 shows the total times that are reduced by avoiding the manual generation of valid (i.e.
46194.3 seconds) and non-valid mutants (i.e. 48833.4 seconds) in the six subject CSs.

Fig. 3. Time required by a manual generation of valid and non-valid mutants

From this chart we can see that the generation time depends on number of mutants and the time
required by each applied MO. For example, in subject MT, the number of valid mutants (91) is
higher than non-valid mutants (85) (see Table 3). However, the generation time of non-valid
mutant is the longer time (see Figure 3). This result is because the some mutation operators for
generating non-valid mutants (e.g. WCO3, WPA) require a longer time (see Table 3 and Table
8).
Additionally, we estimated the time needed for manually creating equivalent mutants by using
the WOP2 operator (58 equivalent mutants * 38.78 second/WOP2 mutant =2249.24 seconds),
which can be avoided by implementing the suggestion described in Section 5.1 in the mutation
tool.
Finally, Table 6 shows the time required to calculate, generate and parse the mutants by using
our mutation tool for the different subject CS in this study. The results show that the calculation
time is negligible when using the tool, while manual generation time is the longest. The time
percentage can thus be reduced by more than 92% in the six evaluated CSs by using the
proposed mutation tool.

Table 6. Time used by the Mutation Tool for generating mutants (FOM) in the subject CS
Task Time MT SG ER OCR SS PA
Using the tool

(sec)
527.047 1165.09

8
1053.086 585.069 808.071 1506.16

2
Reduced Time

(sec) 7244.353
14182.3

02
14910.81

4
13645.13

1
16268.8

29
23131.7

38
Reduced % (M4) 93.2 % 92.4 % 93.4 % 95.9 % 95.3 % 93.9 %

6. Threats to Validity and Limitations
There are several threats that potentially affect the validity of our study including threats to
internal validity, threats to external validity, and threats to construct validity.
Threats to internal validity are conditions that can affect the dependent variables of the
experiment without the researcher’s knowledge. In our study, the selection of mutation
operators is the main threat to internal validity. In order to minimize this threat we used a set of
18 previously defined mutation operators [5] to inject faults systematically.
Threats to external validity are conditions that limit the ability to generalize the results of our
experiments to industrial practice. This threat is reduced by using six CSs of different sizes (see
Section 4.2) and domains (e.g. information systems, games). Some well-documented CS were

GRANDA ET AL. A MODEL-LEVEL MUTATION TOOL TO SUPPORT...

52

found in the literature (i.e. [4], [19] and [3]), and others (i.e. ER, OCR and PA) were selected
because they contained the relevant CS elements required to inject the faults.
Threats to construct validity refer to the suitability of our evaluation metrics. We used well-
known metrics to measure the effectiveness (number of valid and equivalent mutants) and
efficiency (time needed to generate the mutants). In order to perform a specific quantitative
analysis for the time saved in the FOM generation process by using the mutation tool. We
estimated the time that a user needs to perform the task manually using the Keystroke-Level
Model [2]. This model appears to us simple, accurate, and flexible enough to be applied in
evaluation situations like ours. However, the model addresses only a single aspect of task
performance and does not consider other dimensions, such as error-free execution,
concentration, fatigue and so on [2]. Also, this model has several restrictions (e.g. the user must
be an expert; the method must be specified in detail; and the performance must be error-free).
However, we believe that this model represents an appropriate estimation of the time saved by
using the mutation tool and that there is hence little threat to the construct validity.

7. Conclusions and Future Work
Mutations applied at the model level can improve early development of high quality test suites
and can contribute to developing high quality systems, especially in a model-driven context. In
this paper, we propose a tool that automates the generation of mutants for UML CD-based CS
by using a set of previously defined mutation operators. This tool was evaluated for its
effectiveness and efficiency in terms of its percentage of valid and non-equivalent mutants and
the time that can be saved by using it.
 The results show that the mutation operators can be automated avoiding the generation of a
high percentage (49.1%) of non-valid mutants. Thus, the tool generates a low percentage (7.2%)
of equivalent mutants. However, detecting these mutants is costly in terms of the time and effort
of creating, executing and manually inspecting them. We therefore implemented the restrictions
and rules for eliminating them by performing a static analysis of the CS. As these results show,
the reduction achieved in this analysis of equivalent mutants is about 74.3%, which is equivalent
to 2249.24 seconds estimated by KLM, and the cost of reducing non-valid mutant is 49.1%
(48833.4 seconds estimated by KLM) by using the mutation tool in the six subject CSs involved
in this study. Therefore, the results of this study suggest that the mutation tool can help
researchers and supports a well-defined, fault-injecting process to generate a potentially large
number of valid and non-equivalent FOMs, increasing the statistical significance of results
obtained in assessing test case quality.
This study is a part of a more extensive research project, whose main goal is to propose an
approach for testing-based conceptual schema validation in a Model-Driven Environment. We
have identified three directions in which to extend this work. First, we intend to study the use
of HOMs and subsuming HOMs for UML CD-based CS in order to cover all CS elements and
other types of faults in UML CD-based models. Secondly, we hope to evaluate the use of HOMs
and compare them with FOMs in order to reduce the cost of mutation analysis. Finally, we plan
to perform a large-scale empirical study on several industrial subject CS in order to evaluate
the effectiveness of the automatized mutation operators in the mutation tool.

Acknowledgments
This work has been developed with the financial support by SENESCYT of the Republic of
Ecuador, SHIP (SMEs and HEIs in Innovation Partnerships, ref: EACEA/A2/UHB/CL
554187), PERTEST (TIN2013-46928-C3-1-R), European Commission (CaaS project) and
Generalitat Valenciana (PROMETEOII/2014/039).

ISD2016 POLAND

53

Appendix A
Table 7. Estimated Time by Keystroke-Level Model

Tasks Operator sequence Time (sec)
Task 1 CA1 (Open option) 2.9
Task 2 CA1 (File option) + CA1 (Save As option) + CA3 + CA1 (Ok button) 13.72
Task 3 CA5 + CA1 6.76
Task 5 CA1 (Save option) + CA1 (Close button) 5.6

All four tasks 28.98

Table 8. KLM Estimation for Task 4 by each Mutation Operator
MO Task 4

Scenarios for each mutation operator
Task4 time

(sec)
Tasks 1-5 time

(sec)
UPA2 CA2 (select operation) + CA1 (locate the place to edit the parameter)+18K

(Parameter: String) + 1K <enter>
11.02 40.00

WCO1 CA1 (body property) + CA1(edit button) + CA1 (remove button) + CA2 (select
attribute) + K (<supr> press) + 4K (<shift>) + K (“_”) + 4K (var_auxi)+ CA1()
+ 4K (<shift>) + K (“_”) + 5K (<shift>) + 6K (<shift>) 5K (<shift>) +
7K(<shift>) + K + CA1 (add button) + CA1 (Ok button)

30.6 59.04

WCO3 CA2 (select constraint) + CA1 (locate the place to edit a variable)+23K (e.g.
var_auxi=new Real(0,0);) + CA1 (locate the place to replace the operation for
variable)+CA2(select operation)+ 8K (var_auxi) +1K <enter>

20.36 78.32

WCO4 CA1 (body property) + CA1(edit button) + CA1 (remove button) + CA1 (text
point) + K (<supr>press) + K (write operator) + CA1(add button) + CA1 (OK)

17.36 46.34

WCO5 CA1 (body property) + CA1(edit button) + CA1 (remove button) + CA1 (text
point) + K (write operator) + CA1(add button) + CA1 (OK)

14.28 43.26

WCO6 CA1 (body property) + CA1(edit button) + CA1 (remove button) + CA1 (text
point) + K (<supr> press) + K (<supr> press) + K (write operator) + K (write
operator) + CA1(add button) + CA1 (OK)

19 49.70

WCO7 CA1 (body property) + CA1(edit button) + CA1 (remove button) + CA1 (text
point) + K (<supr> press) + CA1(add button) + CA1 (OK)

17.08 46.06

WCO8 CA1 (body property) + CA1(edit button) + CA1 (remove button) + CA1 (text
point) + K (<supr> press) + K (<supr> press) + K (write operator) + K (write
operator) + CA1(add button) + CA1 (OK)

17.92 46.90

WCO9 CA1 (body property) + CA1(edit button) + CA1 (remove button) + CA1 (text
point) + K (<supr> press) + CA1(add button) + CA1 (OK button)

17.08 46.06

WAS1 CA1 (Source End) + CA1 (Type property) + CA4 (select type) + CA1 (Target
End) + CA1 (Type property) + CA4 (select type)

17.28 46.26

WAS2 CA1 (Target End) + CA1 (Aggregation property) + CA4 (select aggregation
type)

8.64 37.62

WAS3 CA1 (Source End) + CA1 (select Lower) + K (new value) + CA1 (select
Upper) + K (new value) + CA1 (Target End) + CA1 (select Lower) + K (new
value) + CA1 (select Upper) + K (new value)

19 46.90

WCL1 CA5 (Class properties) + CA1 (Visibility property) + CA4 (select visibility) 9.8 38.78
WOP2 CA5 (Operation properties) + CA1 (Visibility property) + CA4 (select visibility) 9.98 38.78
WPA CA1 (right button) + CA1 (parameters manage) + CA1 (select data type) + CA1

(select edit button) + CA5 (data types) + CA1 (OK button) + CA1 (OK button
of parameters manage)

21.84 49.74

MCO K (<supr> press) 0.28 29.26
MAS K (<supr> press) 0.28 29.26
MPA K (F2 to edit operation) + CA2 (select the attribute) + k (<supr> press) + CA2

(select the data type) + k (<supr> press) + k (<supr> press on “:”)
6.92 35.90

References
1. Andrews, J.H. et al.: Is mutation an appropriate tool for testing experiments? In:

Proceedings. 27th International Conference on Software Engineering, 2005. ICSE
2005. pp. 402–411 (2005).

2. Card, S.K. et al.: The keystroke-level model for user performance time with interactive
systems. Commun. ACM. 396–410 (1980).

3. España, S. et al.: Integration of Communication Analysis and the OO-Method: Rules
for the manual derivation of the Conceptual Model. , Valencia (2011).

4. España, S. et al.: Technical Report Communication Analysis and the OO-Method :
Manual Derivation of the Conceptual Model the SuperStationery Co. Lab Demo. ,
Valencia (2011).

GRANDA ET AL. A MODEL-LEVEL MUTATION TOOL TO SUPPORT...

54

5. Granda, M.F. et al.: Mutation Operators for UML Class Diagrams. In: CAiSE 2016.
(2016).

6. Granda, M.F. et al.: Towards the automated generation of abstract test cases from
requirements models. In: 1st International Workshop on Requirements Engineering and
Testing. pp. 39–46 IEEE, Karlskrona, Sweden (2014).

7. Granda, M.F. et al.: What do we know about the Defect Types detected in Conceptual
Models ? In: IEEE 9th Int. Conference on Research Challenges in Information Science
(RCIS). pp. 96–107 IEEE, Athens, Greece (2015).

8. Haunold, P., Kuhn, W.: A keystroke level analysis of a graphics application: manual
map digitizing. In: CHI ’94: Proceedings of the SIGCHI conference on Human factors
in computing systems. pp. 337–343 (1994).

9. Holleis, P. et al.: Keystroke-level model for advanced mobile phone interaction. CHI
’07 Proc. SIGCHI Conf. Hum. factors Comput. Syst. 1505–1514 (2007).

10. Jia, Y., Harman, M.: An Analysis and Survey of the Development of Mutation Testing.
Softw. Eng. IEEE Trans. 37, 5, 1–31 (2011).

11. Jia, Y., Harman, M.: Higher Order Mutation Testing. Inf. Softw. Technol. 51, 10,
1379–1393 (2009).

12. Kieras, D.: Using the keystroke-level model to estimate execution times. (2001).
13. Object Management Group: Action Language for Foundational UML (ALF). (2013).
14. Object Management Group: Semantics of a Foundational Subset for Executable UML

Models (fUML). (2012).
15. Object Management Group: Unified Modeling Language (UML). (2015).
16. Sauro, J.: Estimating Productivity: Composite Operators for Keystroke Level

Modeling. Human-Computer Interact. New Trends. 1–10 (2009).
17. van Solingen, R., Berghout, E.: The Goal/Question/Metric Method – A Practical Guide

for Quality Improvement of Software Development. McGraw-Hill Publishing
Company (1999).

18. Teo, L., John, B.E.: Comparisons of keystroke-level model predictions to observed
data. In: CHI ’06: CHI '06 extended abstracts on Human factors in computing systems.
pp. 1421–1426 (2006).

19. Tort, A., Olivé, A.: Case Study: Conceptual Modeling of Basic Sudoku,
http://guifre.lsi.upc.edu/Sudoku.pdf.

20. Vincenzi, A.M.R. et al.: Muta-Pro: towards the definition of a mutation testing process.
J. Brazilian Comput. Soc. 12, 2, 49–61 (2006).

