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Abstract 
Although mutation testing is a well-known technique for assessing the quality of tests, there is 
not a lot of support available for model-level mutation analysis. It is also considered to be 
expensive due to: (i) the large number of mutants generated; ii) the time-consuming activity of 
determining equivalent mutants; and (iii) the mutant execution time. It should also be 
remembered that real software artefacts of appropriate size including real faults are hard to find 
and prepare appropriately. In this paper we propose a mutation tool to generate valid First Order 
Mutants (FOM) for Conceptual Schemas (CS) based on UML Class Diagrams and evaluate its 
effectiveness and efficiency in generating valid and non-equivalent mutants. Our main findings 
were: 1) FOM mutation operators can be automated to avoiding non-valid mutants (49.1%). 2) 
Fewer equivalent mutants were generated (7.2%) and 74.3% were reduced by analysing the CS 
static structure in six subject CSs.  
Keywords: Mutation Tool, Model-level Mutation, Class Diagram Mutants, Test Cases Quality. 

1. Introduction  
In Model-Driven Engineering the models or conceptual schemas (CS) are the primary artefacts 
in the software development process, and efforts are focused on their creation, testing and 
evolution at different levels of abstraction. If a model has defects, these are passed on to the 
following stages of the Software Development Life Cycle, including coding. The quality of a 
CS can be assessed by detecting its defects during execution. The best test suite is the one that 
has the best chance of finding defects, but how we do know how good a test suite is? Mutation 
testing is one of the ways of assessing the quality of a test suite. This method injects artificial 
faults or changes into a CS (mutant generation) and checks whether a test suite is “good enough” 
to detect these artificial faults. The artificial faults can be created automatically, using a set of 
mutation operators (MO) to change (i.e. mutate) some parts of the software artefact. Mutants 
can be classified into two types: First Order Mutants (FOM) and Higher Order Mutants (HOM) 
[11]. FOMs are generated by applying mutation operators only once. HOMs are generated by 
applying mutation operators more than once [10]. However, approaches that employ mutation 
testing at higher levels of abstraction, especially on CS, are not common [10].  
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One problem in the design of tests to assess test case quality is that real software artefacts of 
appropriate size including real faults are hard to find and hard to prepare appropriately (for 
instance, by preparing correct and faulty versions) [1]. Even when software artefacts with real 
faults are available, these faults are not usually numerous enough to allow the experimental 
results to achieve statistical significance [1]. Thus, mutation testing is usually considered 
expensive due to: (i) the large number of mutants generated; (ii) the time-consuming task of 
determining equivalent mutants (i.e. functionally identical to the original artefact although 
syntactically different); and (iii) the time required to compile and execute the mutants [20]. This 
means mutation testing of real-world software would be extremely difficult without a reliable, 
fast and automated tool that: (a) generates mutants, (b) runs the mutants against a test suite and 
(c) reports the mutation score of the test suite. 
This paper describes a mutation tool that generates FOMs for CS based on UML Class Diagram 
(CD) by using previously defined mutation operators [5]. The main usefulness of the mutation 
tool is to support a well-defined, fault-injecting process to assess the test case quality at the CS 
level.  
The novel contributions of this paper are: 1) the MtUML prototype mutation tool designed to 
generate FOMs for UML CD-based CS, eliciting its benefits and weaknesses. 2) An evaluation 
of the effectiveness and efficiency of the mutation tool to generate valid and non-equivalent 
FOMs of UML CD-based CS by using six subject CSs. 
The rest of this paper is organized as follows. Section 2 describes the background to the study 
and Section 3 describes the mutation tool itself. The empirical evaluation is described in Section 
4. Section 5 presents the results of the evaluation by applying 18 mutation operators to six CSs 
and a discussion on effectiveness and efficiency of the proposed mutation tool. Section 6 
describes possible threats to validity. Section 7 summarizes our conclusions and outlines future 
work. 

2. Background  

2.1. Executable Conceptual Schema based on UML Class Diagram 
In this paper, defects will be introduced by deliberately changing a UML CD-based CS, 
resulting in wrong behaviour and possibly causing a failure. As the CS of a system should 
describe its structure and behaviour (constraints), we represent it by a UML-based (CD). A 
class diagram is the UML’s main building block and shows elements of the system at an abstract 
level (e.g. class, association class), their properties (owned attributes), relationships (e.g. 
association and generalization) and operations. In a UML, operations are specified by defining 
pre- and post-conditions (i.e. constraints) [15]. In this paper we evaluate mutation operators that 
can inject defects into the following elements: class, attribute, operations, parameters, 
associations and constraints. In this context, an executable UML model is one with a 
behavioural specification detailed enough to effectively be run as a program. There are several 
model execution tools and environments7. However, each tool defines its own semantics for 
model execution, often including a proprietary action language, and models developed in one 
tool could not be interchanged with or interoperated with models developed in another tool. 
In this work, we use the action language adopted as a standard by OMG8, which is known as 
the Action Language for Foundational UML, or Alf [13], which is basically a textual notation 
for UML behaviours that can be attached to a UML model at any point where there is UML 
behaviour, e.g. the method of an operation or the classifier behaviour of a class. As Alf notation 
includes basic structural modelling constructs, it is also possible to do entire models textually 
in Alf. Semantically, Alf maps the model to the Foundational UML (fUML [14]) subset, after 
which fUML provides the virtual machine for the execution of the Alf language. 
                                                   
7 http://modeling-languages.com/list-of-executable-uml-tools/ 
8 http://www.omg.org/ 
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2.2. Mutant Generation Time Estimation Model 

The usual process for obtaining values of time on task data involves recruiting users and then 
performing tests with them in a lab. This procedure, while providing a wealth of informative 
data can be expensive and time-consuming [16].  
Since one of the goals of this study was to analyse the time saved in the mutant generation 
process by using the proposed tool, we required a method that measured experienced-user task 
time in order to estimate the time required to generate each mutant type analysed. The most 
familiar of these cognitive modelling techniques is GOMS (Goals, Operators, Methods and 
Selection Rules), which has been documented in the still highly referenced text “The 
Psychology of Human Computer Interaction”, by Card, Moran and Newell (1983) [2]. GOMS 
represents a family of techniques, the most familiar of which is Keystroke-Level Modelling [2]. 
We selected the Keystroke-Level Model for this study because it has revealed remarkably 
precise prediction results in several projects such as [8] and [18]. The Keystroke-Level Model 
predicts the task execution time of a specified interface and task scenario. Basically, it requires 
a sequence of keystroke-level actions the user must perform to accomplish a task and then adds 
up the total time required for the actions. The actions are termed at keystroke level if they are 
actions like pressing keys, moving the mouse, pressing buttons, and so on [12]. The values used 
for this technique are described in detail in Section 4.2. 

3. MutUML: A Mutation Tool 
The most critical activity in mutation testing is the suitable design of mutation operators so that 
they reflect typical defects of the artefact under test. In a previous work [7], we presented a 
defects classification at model level and in [5] described the process of selection of the 18 
mutation operators from a list of 50 for generating First Order Mutants to UML CD-based CS. 
We developed a mutation tool (https://staq.dsic.upv.es/webstaq/mutuml.html.) for generating 
first order mutants by using a set of 18 previously defined mutation operators [5], which specify 
the changes and restrictions required for each mutation operator (see Table 1).  

Table 1. Mutation Operators for FOMs taken from [5] 

The tool functionality is separated into the following three processes: 
 Calculating Mutants. Testers can select the CS source file (.uml) to calculate the FOMs and 

also the mutation operators to apply (by default all mutation operators are selected). On 
pressing the “Calculate Mutants” button, the tool calculates the mutants by applying the 
mutation operators. The information for each mutant is shown in the “Mutant Description 
Table” and can be exported as a report by pressing the “Export Report to Excel” button. 

 Generating Mutants. The testers/designers can create the mutants required by selecting 
from the previously calculated mutant list (by default all mutants are selected) and pressing 

# Code Mutation  Operator Description 
1 UPA2 Adds an extraneous Parameter to an Operation 
2 WCO1 Changes the constraint by deleting the references to a class Attribute  
3 WCO3 Change the constraint by deleting the calls to specific operation. 
4 WCO4 Changes an arithmetic operator for another and supports binary operators: +, -,*,/ 
5 WCO5 Changes the constraint by adding the conditional operator “not” 
6 WCO6 Changes a conditional operator for another and supports operators: or, and 
7 WCO7 Changes the constraint by deleting the conditional operator “not” 
8 WCO8 Changes a relational operator for another operators: <, <=, >, >=, ==, != 
9 WCO9 Changes a constraint by deleting a unary arithmetic operator (-). 
10 WAS1 Interchange the members (memberEnd) of an Association. 
11 WAS2 Changes the association type (i.e. normal, composite). 
12 WAS3 Changes the memberEnd multiplicity of an Association (i.e. *-*, 0..1-0..1, *-0..1) 
13 WCL1 Changes visibility kind of the Class (i.e. private) 
14 WOP2 Changes the visibility kind of an operation.  
15 WPA Changes the Parameter data type (i.e. String, Integer, Boolean, Date, Real).   
16 MCO Deletes a constraint (i.e. pre-condition, post-condition constraint, body constraint) 
17 MAS Deletes an Association.  
18 MPA Deletes a Parameter from an Operation.   
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the “Generate the Mutants” button to generate them. The tool generates the CS mutants 
(.uml) from the CS source file (.uml).   

 Parsing Mutants. After the mutants have been generated they need to be analysed by the 
parser. This analysis is required before the mutation testing process and also to 
automatically classify the mutants as valid or non-valid. Each mutant is transformed into 
an executable format by using Alf language. The Alf parser produces an output with the 
analysis results of each mutant. To understand how MtUML works we refer to the partial 
view of a CS in Fig. 1. Five mutation operators have been applied to the CS. Four operators 
generate valid FOM (i.e. b) UPA2, c) WAS3, d) WCO3, e) MCO). However, applying the 
MAS operator to the WhiteCells association generates a non-valid FOM because there is a 
constraint (i.e. MovieUnique) that is related with the association. Simply deleting the 
association would result in a Dangling constraint, which evidently is not desirable. 
Therefore, we need to add more steps to the operator (going from FOM to HOM). The 
HOM should delete the association together with the respective constraint. This way, the 
mutant will not be detected by the parser and can generate a valid mutant for testing. 

 
Fig. 1. Excerpt of a UML CD-based CS and the application of five mutation operators, adapted 

from [19]  

4. Empirical Evaluation 
This section describes the goal, the research questions, the metrics, the evaluation context and 
procedure followed for the evaluation. 

4.1. Goal 
In accordance with the Goal/Question/Metric Paradigm [17] the goal of our empirical study is 
as follows: To analyse the mutant generation strategy of the Mutation tool, for the purpose of 
carrying out an evaluation with respect to the effectiveness and efficiency in generating valid 
First Order Mutants to UML CD-based CS from the viewpoint of the researchers.  

4.2. Research Questions and Metrics  
By means of this study, we aim to be able to respond to the following research questions (RQ): 
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RQ1: How effective are the mutation operators implemented in a mutation tool for 
generating FOMs of Conceptual Schema? As this RQ is focused on the generation 
strategy, the following research questions and metrics are derived from it: 

1) RQ1.1. For each defined mutation operator, what is the percentage of valid mutants 
generated by the mutation tool? The metric M1 for RQ1.1 is the percentage calculated by 
dividing the number of valid mutants generated by the tool by the total number of mutants 
that can be generated from the CS elements. The number of mutants that can be generated 
determines the cost of creating and executing them and also the cost of deriving test cases 
that kill them. The number of non-valid mutants has an impact on the cost of identifying 
and discarding them. The mutation tool can indicate whether a mutant is valid or not 
according to the restrictions defined for each mutation operator. 

(ܱܯ)1ܯ =
(ܱܯ)ܯ
(ܱܯ)ீܯ  (1) %100 ݔ

2) RQ1.2. For each defined MO, what percentage of parsed mutants is equivalent? The first 
metric M2 for RQ1.2 is the percentage calculated by dividing the number of valid mutants 
that are equivalent by the number of valid mutants for mutation operator. The number of 
equivalent mutants has an impact on the cost of performing mutation testing because a tester 
needs to execute the test cases against the equivalent mutants to identify and discard them. 

(ܱܯ)2ܯ =
(ܱܯ)ாܯ
(ܱܯ)ܯ  (2) %100 ݔ 

The second metric M3 for RQ1.2 is the percentage calculated by dividing the number of 
equivalent mutants that can be eliminated using the proposed tool, and total number of 
equivalent mutants generated by an operator. The cost of performing mutation testing of 
equivalent mutants can be reduced by the tool by automating an analysis of the subject CS 
to identify them. 

(ܱܯ)3ܯ =
ݐݏ݁ܶܵܥ ݕܾ ݀݁ݐܿ݁ݐ݁݀ (ܱܯ)ாܯ

(ܱܯ)ாܯ  (3) %100 ݔ

RQ2: To what extent is the generation time reduced by using the tool?  

The metric M4 for this RQ is the percentage of time saved by the mutation tool when generating 
mutants (FOMs). The Manual Generation time is measured by the generation time of valid and 
non-valid mutants for the subject CS. While the Tool Generation time is calculated by adding 
the times required to calculate, generate and parse the mutants (FOMs) when using the 
MtUML tool. This metric can be measured by applying the following formula:  

(ܵܥ)4ܯ =
(ܵܥ)݁݉݅ܶ ݊݅ݐܽݎ݁݊݁ܩ ݈ܽݑ݊ܽܯ − (ܵܥ)݁݉݅ܶ ݊݅ݐܽݎ݁݊݁ܩ ݈ܶ

(ܵܥ)݁݉݅ܶ ݊݅ݐܽݎ݁݊݁ܩ ݈ܽݑ݊ܽܯ
 (4) %100 ݔ

In order to predict the times for manual generation, the following step-by-step description 
adapted from Kieras [12] was used to apply the Keystroke-Level Model method in this work. 
1) Choose a representative task scenario for each mutation operator. The general scenario 

required to create manually a CS mutant is: (a) Task1 -open the CS source file, (b) Task2 
-duplicate the CS source file, (c) Task3 -select the CS element, (d) Task4 -apply the 
mutation operator, this task is particular for each mutation operator (see Table 3), and (e) 
Task 5 -save the mutant and close it. 

2) List the keystroke-level actions involved in doing each task with the execution times. The 
following are some of the standard keystroke-level actions and estimated times for each 
operator [12]. 

 M: Mental operation: User decides or reflects where to click (1.2 sec) 
 H: Home: User moves hand between keyboard and mouse (0.4 sec) 
 P: Point: User point with the mouse to a target on the screen (1.1. sec) 
 K: Set: User clicks on the target (0.28 sec). The time considers the average non-

secretarial typist (40 wpm –words per minute) [16].  
 B: Button: User clicks on the button (0.1 sec). 
 BB: User pushes and releases the mouse button rapidly, as in a selection click (0.2 sec). 
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As we assumed waiting time to be negligible we did not deal with any physical operators for it.  
3) List and calculate time for each composite action. Using the granular steps from 

Keystroke-Level Model, a composite action is clicking on a menu option of the UML 
diagram editor such as File/Open, Save and Save as, so the four steps are replaced with 
the composite action: Click on Option. The time to complete this action is modelled in 
[22]: M (1.2) + P (1.1) + H (0.4) + B (0.1) = approximately 2.8 seconds. Using this method, 
we defined a small number of composite actions to account for almost all the above five 
tasks in the 18 mutation operators. The composite actions used were as follows:  

 CA1: Click an Option/Button (MPHB = 2.8 sec). 
 CA2: Double click (MPHBB = 2.9 sec). 
 CA3: Typing Mutant name in a Text Field of the Dialog box. The mutant name is 

formed by the code of mutant (3 uppercase letters) + an underscore (“_”) + a sequential 
number formed by 3 digits + the file extension “.umlclass”. (18K= 5.32 sec). Pressing 
the SHIFT key counts as a separate keystroke. 

 CA4: Pull-Down List (3.04) (time taken from [16]). 
 CA5: Scrolling (3.96 sec) (time taken from [16]). 

4) Estimate the time to complete all scenarios for each mutation operator. For this study we 
assumed that the person creating the mutants was skilled in: (a) modelling UML CD-based 
CS, (b) using the UML CD editor (e.g. UML2 tool), and (c) applying the different 18 
mutation operators. It was also assumed that the FOMs list had been calculated previously, 
the UML CD editor had been loaded and active and finally that the tasks were error-free. 
The Keystroke-Level Model thus addressed only a single aspect of task performance and 
did not consider other dimensions, such as error-free execution, concentration, fatigue and 
so on [2]. Using the defined composite action times, the times for each task were calculated 
(see Tables 7 and 8 in Appendix A).  

Table 7 shows the times in seconds estimated by the method for tasks common (i.e. Tasks 1, 2, 
3, and 5) to all mutation operators. Table 8 shows the sequence of composite actions required 
for each mutation operator for Task 4 and the time predicted by Keystroke-Level Model for this 
task. The time for each mutation operator was estimated in the last column of Table 8 by using 
the times of the respective tasks for each operator (Task 1 – Task 5). 

4.3. Evaluation Context  

Subject CSs 

Six subject CSs were used in the study (see elements in Table 2). These contained a variety of 
possible characteristics present in UML CD-based CS, including classes, relationships (i.e. 
association, composite aggregation, and generalization) and different types of constraints (i.e. 
pre-condition, post-condition and body condition). Some were found in the literature (i.e. [4], 
[19] and [3]) and others were selected because they contained the CS elements required to inject 
the faults.  

Table 2. Elements of the subject Conceptual Schemas 
Element MT SG ER OCR SS PA 
Classes 6 11 7 10 9 15 
Attributes 26 26 36 61 44 43 
Derived Attributes 0 6 6 1 1 33 
Operations 13 19 24 16 32 30 
Parameters 43 48 75 77 91 82 
Associations 5 6 8 10 9 19 
Derived Associations 0 2 0 0 0 0 
Composite Aggregations 0 3 0 0 0 0 
Constraints 9 19 21 14 12 45 
Generalizations 0 4 0 3 0 0 

A brief description of each CS is as follows:  



GRANDA ET AL.  A MODEL-LEVEL MUTATION TOOL TO SUPPORT...  
 

 

48 
 

1. The Medical Treatment (MT) CS defines part of the CS (of a Medical Treatment business 
process) of a fictional hospital named University Hospital Santiago Grisolía, developed by 
España et al. [4]. 

2. The Sudoku Game (SG) CS was developed by Tort and Olivé [19]  as an object-oriented 
CS of the Sudoku Game system and this CS defines the functionality for managing different 
users, who play with Sudokus and generating new games. 

3. The Expense Report (ER) CS defines the functionality of an information system to manage 
the expense report life cycle of a business and deals with several entities such as 
departments, employees, projects and expense types. 

4. The Online Conference Review (OCR) CS, which is based on the description of the 
CyberChair System, defines the functionality of an information system to deal with 
members (committee chair and program committee) of a conference, as well as authors that 
submit papers to a conference to be evaluated for acceptance. 

5. The Super Stationery (SS) CS defines the information system of a company that provides 
stationery and office material to its clients. This CS was developed by España et al. [3]. 

6. The Photography Agency (PA) CS defines the information system that manages 
photographers and their photographic reports for distribution to newspaper publishers. 

Tools 

In this paper one of the aims is to predict the efficiency of the mutation tool in generating valid 
and non-equivalent mutants in a UML CD editor. The Keystroke Level Model (KLM) 
Calculator (http://courses. csail.mit.edu/ 6.831/2009/ handouts/ ac18-predictive- evaluation/ 
klm.shtml) is used for calculating the predictions of task execution times in the UML CD editor 
from defined scenarios for applying the different mutation operators. This choice is motivated 
by the large number of publications in the Computer Human Interaction environment using 
KLM in a variety of emerging application domains [9]. 
On the other hand, there is no literature available on tools with both integrated functionality (i) 
the automated generation of test cases and (ii) tests execution for Conceptual Schemas. 
Therefore, we used our CoSTest CS testing tool (https://staq.dsic.upv.es/webstaq/costest.html) 
for this work. This tool generates test cases by applying a Model-Driven approach [6]. The test 
cases use assertions on the return values of the methods and compare them with the post-
conditions. We performed the following steps to use the CoSTest tool with UML CD-based 
CS: 

 For each CS, we set the CS testing tool to generate the test cases. We provided the CS 
testing tool with a requirements model and a set of input values suitable for the subject 
CS, after which the tool generated the test suite. 

 Since a CS is not designed for the CS testing tool, the tool generates an executable CS 
by applying a transformation from UML to the Alf language. 

 The test cases generated by the tool were executed against the CS under test by using 
the virtual machine for the execution of the Alf language. 

A full description of the testing tool is beyond the scope of the present paper. 
Finally, while there are tools that support manipulation of UML-based Conceptual Schemas 
such as Papyrus (http://www.eclipse.org/papyrus/) and UML2 Tools 
(http://wiki.eclipse.org/MDT-UML2Tools). The UML2 tool is an Eclipse Modelling 
Framework-based implementation, which is integrated into the tool used for modelling the 
requirements used as input in the CoSTest tool. For this reason we selected this tool for 
manipulating UML models. 

4.4. Procedure 

With the aim of finding empirical evidence to answer the aforementioned RQs, we divided our 
study into two parts:  
The first evaluation was performed to answer RQ1 and partially answer RQ2. In the first 
evaluation we generated mutants for each mutation operator from the subject CS, then identified 
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non-valid mutants by applying the MO restrictions and provided suggestions on how to reduce 
the percentage of equivalent mutants. These results are given in Section 5.1.  
The second evaluation was designed to answer RQ2. For this we derived a reliable way to 
estimate time-on task by using the metric defined in Section 4.2 and the tool summarized in 
Section 4.3. The generation time savings when using the tool for each subject are given in 
Section 5.2. 

5. Results Analysis 

5.1. Effectiveness: Mutant Generation from FOMs Mutation Operators 
Table 3 summarizes the results of generating and parsing the mutants for the subject CS by 
using the mutation tool. For each mutation operator in Table 3 we show the number of (valid 
and non-valid) possible mutants (MP) that can be generated from the CS elements, the number 
of mutants generated by the tool (MG) for each of the subject CS, as well as the total number 
of possible generated mutants and the total number of mutants generated by the tool for all CS. 
Column M1 shows the percentage of valid mutants generated by the tool from all CS. The 
highest percentage of M1 (100%) was achieved by implementing the rules and restrictions of 
the FMOs.  It can be seen that the total number of non-valid mutants (1039 or 49.1%) is lower 
than the valid mutants (1079 or 50.9%). The last cell of the last column (C%) in Table 3 shows 
the percentage of valid mutants for each mutation by applying the restrictions of the FOMs for 
all six subject CSs. 

Table 3. Generated and Valid Mutants using mutation tool 
CS  

 
MO 

MT SG ER OCR SS PA All 
MP MG MP MG MP MG MP MG MP MG MP MG MP MG M1  

(%) 
C 

(%) 
UPA2 13 13 19 19 24 24 16 16 32 32 30 30 134 134 100 100.0 
WCO1 0 N/A 7 7 9 9 1 1 3 3 33 33 53 53 100 100.0 
WCO3 13 0 19 0 29 5 16 0 34 2 43 13 154 20 100 13.0 
WCO4 0 N/A 15 15 8 8 0 N/A 2 2 26 26 51 51 100 100.0 
WCO5 0 N/A 11 11 11 11 6 6 2 2 5 5 35 35 100 100.0 
WCO6 0 N/A 12 12 2 2 5 5 3 3 4 4 26 26 100 100.0 
WCO7 0 N/A 1 1 0 N/A 0 N/A 0 N/A 0 N/A 1 1 100 100.0 
WCO8 6 6 47 47 21 21 26 26 13 13 34 34 147 147 100 100.0 
WCO9 0 N/A 1 1 0 N/A 0 N/A 0 N/A 0 N/A 1 1 100 100.0 
WAS1 5 4 11 0 8 0 10 7 9 6 19 5 62 22 100 35.5 
WAS2 5 5 11 11 8 8 10 10 9 9 19 19 62 62 100 100.0 
WAS3 15 12 33 0 24 0 30 21 27 18 57 15 186 66 100 35.5 
WCL1 6 6 11 11 7 7 10 10 9 9 15 15 58 58 100 100.0 
WOP2 13 13 19 19 24 24 16 16 32 32 30 30 134 134 100 100.0 
WPA 43 9 48 9 75 17 77 3 91 26 82 12 416 76 100 18.3 
MCO 9 9 19 11 21 15 14 13 12 11 45 12 120 71 100 59.2 
MAS 5 4 11 0 8 0 10 7 9 6 19 5 62 22 100 35.5 
MPA 43 10 48 11 75 23 77 6 91 32 82 18 416 101 100 24.0 
All 176 91 343 185 354 174 324 147 378 206 543 276 2118 1079 100 50.9 

We manually analysed the mutants to determine whether they were equivalent (i.e. the CS 
mutant produces the same output as the original CS as if it had no faults). The analysed output 
is produced by the CS testing tool. An example of an equivalent mutant is shown in Fig. 2, 
where the mutation is not detected by the CS testing tool. 

 
Fig. 2. Excerpt of a Constraint mutated by WCO8 operator 

Table 4 shows the results of analysing equivalent mutants generated in the six CS. For each CS, 
the table shows the number of equivalent mutants and the percentage of equivalent mutants out 
of the valid mutants generated by each operator. For example, the first row in Table 4 shows 
that operator WCO4 had 2 equivalent mutants in the Sudoku CS. These contribute about 13.3% 
of the 15 valid mutants that the operator has generated. Column M2 in Table 4 shows the 
percentage of equivalent mutants of the total number of valid mutants for each operator. The 

 

Context WHITE_CELL inv property_current_value_derivation:  
// Original Constraint with Relational Operator "==" 
this.current_value=this.moves->size()==0?-1:this.current_value= this.moves->last().value; 
// Mutant Constraint with Relational Operator "<=" 
this.current_value=this.moves->size()<=0?-1:this.current_value= this.moves->last().value; 
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last column in Tables 4 shows the percentage of equivalent mutants generated by each operator 
out of the total number of equivalent mutants. For example, in the first row of Table 4, the 
WCO4 operator generated 2 equivalent mutants out of the 78 equivalent mutants that the 
mutation tool generated in all the CS. It therefore, contributed about 2.6% of the total number 
of equivalent mutants. The last column in the table shows that most of the equivalent mutants 
were generated by the WOP2 operator with 74.3% of the total number of equivalent mutants.  

Table 4. Number and percentage of equivalent mutants generated using the mutation tool 
CS 

MO 
MT SG ER OCR SS PA All 

ME % ME % ME % ME % ME % ME % ME M2(%) C(%) M3 % 
WCO4   2 13.3         2 3.9 2.6 0 
WCO6   1 8.3     1 33.3   2 7.7 2.6 0 
WCO8   6 12.8 1 4.8 3 11.5   6 17.6 16 10.9 20.5 0 
WOP2 6 46.2 11 57.9 7 29.2 10 62.5 9 28.1 15 50.0 58 43.3 74.3 74.3 
All 6 6.6 20 10.8 8 4.6 13 8.8 10 4.9 21 7.6 78 7.2 100.0 74.3 

We inspected the equivalent mutants to determine why the mutants generated cannot be 
detected. The reason is that the WOP2 operator (changes the operation visibility) when it is 
applied on a constructor operation, only affects the access inherited by child classes (a private 
constructor of the super class is not inheritable). Therefore, it is impossible to detect this 
mutation operator when the operation is executed in the test cases. A restriction in the rule of 
the WOP2 mutation operator should be included in the tool to avoid generating this type of 
mutant. There are other equivalent mutants such as WCO4, WCO6 and WCO8, which can only 
be identified by inspecting the mutants. The mutation tool cannot avoid producing them. 
However, by including the above-described implementation restriction for operator WOP2, we 
see that 74.3% (Metric M3) of the equivalent mutants generated by the mutation tool can be 
eliminated. 

5.2. Efficiency: Generation Time Reduction by Using the Mutation tool 

We estimated the time of manual generation of valid and non-valid mutants by using the 
calculated times for each mutation operator in Section 4.2 (see Table 3).  
Table 5 summarizes the times obtained for each mutation operator in each subject CS by 
generating valid first order mutants. The results show that the subject MT has the lowest 
mutation time (3661.2 seconds) and subject PA the highest (12516.2 seconds). The last column 
in Table 5 shows that most time is required to create mutants by using the WCO8 mutation 
operator (6894.3 seconds), and the shortest time is required to create the mutants by using the 
WCO7 and WCO9 operators (46.1 seconds). These results are as expected, because these 
operators generated the highest and lowest values in the number of valid mutants in the six CSs. 
Some fields in Table 5 are empty because the different subject CS had not the required elements 
by these mutation operators. 

Table 5. Reduced Time in Generating Valid Mutant by Using the Mutation tool 

MO MT 
(sec) 

SG (sec) ER (sec) OCR 
(sec) 

SS (sec) PA (sec) All (sec) 

UPA2 520.0 760.0 960.0 640.0 1280.0 1200.0 5360.0 
WCO1  413.3 531.4 59.0 177.1 1948.3 3129.1 
WCO3 1018.2  391.6  156.6 1018.2 1566.4 
WCO4  695.1 370.7  92.7 1204.8 2363.3 
WCO5  475.9 475.9 259.6 86.5 216.3 1514.1 
WCO6  596.4 99.4 248.5 149.1 198.8 1292.2 
WCO7  46.1     46.1 
WCO8 281.4 2204.3 984.9 1219.4 609.7 1594.6 6894.3 
WCO9  46.1     46.1 
WAS1 185.0   323.8 277.6 231.3 1017.7 
WAS2 188.1 413.8 301.0 376.2 338.6 714.8 2332.4 
WAS3 562.8   984.9 844.2 703.5 3095.4 
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WCL1 232.7 426.6 271.5 387.8 349.0 581.7 2249.2 
WOP2 504.1 736.8 930.7 620.5 1241.0 1163.4 5196.5 
WPA 447.7 447.7 845.6 149.2 1293.2 596.9 3780.2 
MCO 263.3 321.9 438.9 380.4 321.9 351.1 2077.5 
MAS 117.0   204.8 175.6 146.3 643.7 
MPA 4359.0 394.9 825.7 215.4 1148.8 646.2 3590.0 
All 3661.2 7978.7 7427.2 6069.5 8541.5 12516.2 46194.3 

Fig. 3 shows the total times that are reduced by avoiding the manual generation of valid (i.e. 
46194.3 seconds) and non-valid mutants (i.e. 48833.4 seconds) in the six subject CSs.  

 
Fig. 3. Time required by a manual generation of valid and non-valid mutants 

From this chart we can see that the generation time depends on number of mutants and the time 
required by each applied MO. For example, in subject MT, the number of valid mutants (91) is 
higher than non-valid mutants (85) (see Table 3). However, the generation time of non-valid 
mutant is the longer time (see Figure 3). This result is because the some mutation operators for 
generating non-valid mutants (e.g. WCO3, WPA) require a longer time (see Table 3 and Table 
8).  
Additionally, we estimated the time needed for manually creating equivalent mutants by using 
the WOP2 operator (58 equivalent mutants * 38.78 second/WOP2 mutant =2249.24 seconds), 
which can be avoided by implementing the suggestion described in Section 5.1 in the mutation 
tool. 
Finally, Table 6 shows the time required to calculate, generate and parse the mutants by using 
our mutation tool for the different subject CS in this study.  The results show that the calculation 
time is negligible when using the tool, while manual generation time is the longest. The time 
percentage can thus be reduced by more than 92% in the six evaluated CSs by using the 
proposed mutation tool. 

Table 6. Time used by the Mutation Tool for generating mutants (FOM) in the subject CS 
Task Time MT SG ER OCR SS PA 
Using the tool 

(sec) 
527.047 1165.09

8 
1053.086 585.069 808.071 1506.16

2 
Reduced Time 

(sec) 7244.353 
14182.3

02 
14910.81

4 
13645.13

1 
16268.8

29 
23131.7

38 
Reduced % (M4) 93.2 % 92.4 % 93.4 % 95.9 % 95.3 % 93.9 % 

6. Threats to Validity and Limitations 
There are several threats that potentially affect the validity of our study including threats to 
internal validity, threats to external validity, and threats to construct validity. 
Threats to internal validity are conditions that can affect the dependent variables of the 
experiment without the researcher’s knowledge. In our study, the selection of mutation 
operators is the main threat to internal validity. In order to minimize this threat we used a set of 
18 previously defined mutation operators [5] to inject faults systematically. 
Threats to external validity are conditions that limit the ability to generalize the results of our 
experiments to industrial practice. This threat is reduced by using six CSs of different sizes (see 
Section 4.2) and domains (e.g. information systems, games). Some well-documented CS were 
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found in the literature (i.e. [4], [19] and  [3]), and others (i.e. ER, OCR and PA) were selected 
because they contained the relevant CS elements required to inject the faults. 
Threats to construct validity refer to the suitability of our evaluation metrics. We used well-
known metrics to measure the effectiveness (number of valid and equivalent mutants) and 
efficiency (time needed to generate the mutants). In order to perform a specific quantitative 
analysis for the time saved in the FOM generation process by using the mutation tool. We 
estimated the time that a user needs to perform the task manually using the Keystroke-Level 
Model [2]. This model appears to us simple, accurate, and flexible enough to be applied in 
evaluation situations like ours. However, the model addresses only a single aspect of task 
performance and does not consider other dimensions, such as error-free execution, 
concentration, fatigue and so on [2]. Also, this model has several restrictions (e.g. the user must 
be an expert; the method must be specified in detail; and the performance must be error-free). 
However, we believe that this model represents an appropriate estimation of the time saved by 
using the mutation tool and that there is hence little threat to the construct validity. 

7. Conclusions and Future Work 
Mutations applied at the model level can improve early development of high quality test suites 
and can contribute to developing high quality systems, especially in a model-driven context. In 
this paper, we propose a tool that automates the generation of mutants for UML CD-based CS 
by using a set of previously defined mutation operators. This tool was evaluated for its 
effectiveness and efficiency in terms of its percentage of valid and non-equivalent mutants and 
the time that can be saved by using it. 
 The results show that the mutation operators can be automated avoiding the generation of a 
high percentage (49.1%) of non-valid mutants. Thus, the tool generates a low percentage (7.2%) 
of equivalent mutants. However, detecting these mutants is costly in terms of the time and effort 
of creating, executing and manually inspecting them. We therefore implemented the restrictions 
and rules for eliminating them by performing a static analysis of the CS. As these results show, 
the reduction achieved in this analysis of equivalent mutants is about 74.3%, which is equivalent 
to 2249.24 seconds estimated by KLM, and the cost of reducing non-valid mutant is 49.1% 
(48833.4 seconds estimated by KLM) by using the mutation tool in the six subject CSs involved 
in this study. Therefore, the results of this study suggest that the mutation tool can help 
researchers and supports a well-defined, fault-injecting process to generate a potentially large 
number of valid and non-equivalent FOMs, increasing the statistical significance of results 
obtained in assessing test case quality. 
This study is a part of a more extensive research project, whose main goal is to propose an 
approach for testing-based conceptual schema validation in a Model-Driven Environment. We 
have identified three directions in which to extend this work. First, we intend to study the use 
of HOMs and subsuming HOMs for UML CD-based CS in order to cover all CS elements and 
other types of faults in UML CD-based models. Secondly, we hope to evaluate the use of HOMs 
and compare them with FOMs in order to reduce the cost of mutation analysis. Finally, we plan 
to perform a large-scale empirical study on several industrial subject CS in order to evaluate 
the effectiveness of the automatized mutation operators in the mutation tool. 
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Appendix A 
Table 7. Estimated Time by Keystroke-Level Model 

Tasks Operator sequence Time (sec) 
Task 1 CA1 (Open option) 2.9 
Task 2 CA1 (File option) + CA1 (Save As option) + CA3 +  CA1 (Ok button) 13.72 
Task 3 CA5 + CA1 6.76 
Task 5 CA1 (Save option) + CA1 (Close button) 5.6 

All four tasks  28.98 

Table 8. KLM Estimation for Task 4 by each Mutation Operator 
MO Task 4 

Scenarios for each mutation operator 
Task4 time 

(sec) 
Tasks 1-5 time 

(sec) 
UPA2 CA2 (select operation) + CA1 (locate the place to edit the parameter)+18K 

(Parameter: String) + 1K <enter> 
11.02 40.00 

WCO1  CA1 (body property) + CA1(edit button) + CA1 (remove button) + CA2 (select 
attribute) + K (<supr> press) + 4K (<shift>) + K (“_”) + 4K (var_auxi)+ CA1() 
+ 4K (<shift>) + K (“_”) + 5K (<shift>) + 6K (<shift>) 5K (<shift>) + 
7K(<shift>) + K + CA1 (add button) + CA1 (Ok button) 

30.6 59.04 

WCO3 CA2 (select constraint) + CA1 (locate the place to edit a variable)+23K (e.g. 
var_auxi=new Real(0,0);) +  CA1 (locate the place to replace the operation for 
variable)+CA2(select operation)+ 8K (var_auxi) +1K <enter> 

20.36 78.32 

WCO4 CA1 (body property) + CA1(edit button) + CA1 (remove button) + CA1 (text 
point) + K (<supr>press) + K (write operator) + CA1(add button) + CA1 (OK) 

17.36 46.34 

WCO5 CA1 (body property) + CA1(edit button) + CA1 (remove button) + CA1 (text 
point) + K (write operator) + CA1(add button) + CA1 (OK) 

14.28 43.26 

WCO6 CA1 (body property) + CA1(edit button) + CA1 (remove button) + CA1 (text 
point) + K (<supr> press) + K (<supr> press) + K (write operator) + K (write 
operator) + CA1(add button) + CA1 (OK) 

19 49.70 

WCO7 CA1 (body property) + CA1(edit button) + CA1 (remove button) + CA1 (text 
point) + K (<supr> press) + CA1(add button) + CA1 (OK) 

17.08 46.06 

WCO8 CA1 (body property) + CA1(edit button) + CA1 (remove button) + CA1 (text 
point) + K (<supr> press) + K (<supr> press) + K (write operator) + K (write 
operator) + CA1(add button) + CA1 (OK) 

17.92 46.90 

WCO9 CA1 (body property) + CA1(edit button) + CA1 (remove button) + CA1 (text 
point) + K (<supr> press) + CA1(add button) + CA1 (OK button) 

17.08 46.06 

WAS1 CA1 (Source End) + CA1 (Type property) + CA4 (select type ) + CA1 (Target 
End) + CA1 (Type property) + CA4 (select type) 

17.28 46.26 

WAS2 CA1 (Target End) + CA1 (Aggregation property) + CA4 (select aggregation 
type) 

8.64 37.62 

WAS3 CA1 (Source End) + CA1 (select Lower) + K (new value ) + CA1 (select 
Upper) + K (new value ) + CA1 (Target End) + CA1 (select Lower) + K (new 
value ) + CA1 (select Upper) + K (new value ) 

19 46.90 

WCL1 CA5 (Class properties) + CA1 (Visibility property) + CA4 (select visibility) 9.8 38.78 
WOP2 CA5 (Operation properties) + CA1 (Visibility property) + CA4 (select visibility) 9.98 38.78 
WPA CA1 (right button) + CA1 (parameters manage) + CA1 (select data type) + CA1 

(select edit button) + CA5 (data types) + CA1 (OK button) + CA1 (OK button 
of parameters manage)  

21.84 49.74 

MCO K (<supr> press) 0.28 29.26 
MAS K (<supr> press) 0.28 29.26 
MPA K (F2 to edit operation) + CA2 (select the attribute) + k (<supr> press) + CA2 

(select the data type) + k (<supr> press) + k (<supr> press on “:”) 
6.92 35.90 
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